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Introduction

Traditional safety management uses crash data aggregated in

multi-year periods to evaluate safety performance at segments and

intersections. The candidate roads for treatment and proposed

countermeasures for application currently are selected based on

crash statistics and crash modification factors (CMFs). The

expected safety performance is currently estimated as a function of

the road’s average annual daily traffic (AADT) and major

geometric features. The high-resolution data sets now available

make it possible to perform disaggregate safety analysis.

Specifically, statistical models can be developed to capture the

effect of short-term conditions on crash risk within a certain time

period (e.g., 1 hour). This approach advances the quality of safety

prediction by considering previously excluded time-dependent

conditions (e.g., speed, weather, and traffic control) and their

interactions with the geometric features of a road. This study

established a time-dependent proactive safety management frame-

work for this purpose. The risk-based safety management tools

proposed and developed in this study can be used to supplement

an existing crash count-based safety management system (SMS).

Findings

There were three main outcomes from this study.

1. Achieving a feasible and accurate time-dependent crash risk

estimation framework. Although some time-dependent fac-

tors (e.g., precipitation and segment speeds) were identified

as having effects on roadway safety performance in past

research, this study established comprehensive model sets for

two typical roadway elements (rural freeway segments and

signalized intersections). The proposed models took advan-

tage of all the available time-dependent data; and the risk

profiles they produced show promising changing trends

compared to the observed crash occurrence.

2. Identifying significant time-dependent and fixed condition

factors. Several time-dependent factors, such as hourly

volume (traffic), ice (weather), standard deviation of segment

speed (speed), and coordination offset (traffic control), were

found to affect crash probability and conditional severe crash

probability, thus validating the idea of using disaggregated

3. Creating an example prototype tool that illustrated the

feasibility of the new approach and facilitated its implementa-

tion into existing safety management practices. This tool

applied user-decided triggering conditions (e.g., traffic and

weather) that activated the intended operational counter-

measure (e.g., reduced speed limit and warning). It then

estimated the expected number and severity of crashes,

which can be used with CMFs to support the benefit-cost

analysis process. The obtained time-dependent crash risk

models and the safety benefits of several time-dependent

safety countermeasures, such as variable speed limits and

optimized coordination time plans, were tested and verified in

this study.

Implementation

Implementation of the proposed risk-based safety management

framework included three components.

1. Enquiring and accessing data sources. There are several data

sources outside the Indiana Department of Transportation

(INDOT) SMS database, such as hourly weather conditions,

INRIX speed data, and, for signalized intersections, detector/

phase data maintained by the Traffic Management Center.

2. Processing data. The raw data should be pre-processed, which

includes formatting, filtering, and imputing, and then proces-

sing with the risk models to estimate the risk.

3. Applying the processed data in the current SMS supplemen-

ted with risk-based elements.

a. The crash-based SMS tool, the Safety Needs

Identification Program (SNIP), identified candidate road

segments and intersections.

b. The risk-based SMS identified conditions that tempora-

rily cause elevated crash risk. These conditions may be

used as triggers of operational interventions.

c. The provided prototype risk-based tool estimated the

number of crashes on roads in periods with potential

operational interventions where such interventions have

yet to be applied.

d. The crash-based SMS tool, the Roadway Hazard

Analysis Tool (RoadHAT), performed a benefit/cost

analysis of the considered operational countermeasures

to justify their implementation.

EXECUTIVE SUMMARY data in safety management. The fixed condition factors, 
mainly the geometry settings, were identified as significant in
the models as well.
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1. INTRODUCTION

State and local transportation agencies supervise the
performance of roads in their jurisdictions. The High-
way Safety Manual (HSM) published by the American
Association of State Highway Transportation Officials
(AASHTO), is among the most widely used road safety
publications and provides knowledge and analytical
tools for monitoring, evaluating, and improving the
safety performance of roads (AASHTO, 2010). The
Indiana Department of Transportation (INDOT)
followed the principles described in the HSM to
develop and implement its statewide safety manage-
ment system (SMS) (Tarko et al., 2019).

1.1 Indiana’s Safety Management System

The primary objective of the Indiana SMS, as it is for
other states as well, is reducing the number and severity
of road traffic crashes. This objective is achieved by
identifying high-crash roads, determining causes, con-
sidering alternative countermeasures, selecting the most
promising ones for implementation, and then evaluat-
ing a solution’s effectiveness after its implementation.
A successful SMS requires adequate communication
and coordination across the various engineering and
decision-making units involved in traffic safety,
improving analytical tools for problem identification,
and providing decision-support tools for policymakers
and managers to enable the effective use of the
resources allocated to safety management. The imple-
mented tools that support INDOT’s SMS decision-
making process include the Safety Needs Identification
Program (SNIP), the Roadway Hazard Analysis Tool
(RoadHAT), the Crash/Conflict Diagram Builder
(CDB), and the Hazard Elimination Program (HEP).

HEP is a crucial element of INDOT’s SMS. HEP
focuses on road improvements and provides analytical
tools for identifying safety problems and their solu-
tions. HEP’s objectives are identifying high-crash
locations, conducting safety reviews to find the causes
of crashes and corresponding road deficiencies, suggest-
ing appropriate countermeasures, grouping counter-
measures to form projects, determining the economic
feasibility of projects, and conducting evaluations of the
implemented safety projects to provide feedback into
the program. The core components of the HEP process
are shown in Figure 1.1 (Tarko & Kanodia, 2004).

Identifying high-crash locations (HCLs): The first
step of the HEP process involves selecting sites with
safety problems from a pool of thousands of candi-
dates, a small amount of which is typically available at
the road network level. Such data include the type
of location (e.g., signalized intersection, rural freeway
segment), basic geometric characteristics, traffic
volume, and crash records. A priority list of sites for
further investigation is prepared using evidence-based
criteria.

Identifying HCLs involves evaluating thousands
of candidates with safety problems, which then are

Figure 1.1 Core components of INDOT’s Hazard
Elimination Program.

included on a priority list of sites. A systematic process
for this purpose was developed by INDOT and the
Center for Road Safety (CRS) at Purdue University.
The first step of this process consists of classifying the
location into one of the current road categories (e.g.,
rural freeway segments, state-local intersections, and
ramps). Following the classification, the required crash,
traffic, and roadway data are collected. Then, a set of
locally calibrated safety performance functions (SPFs)
are used to estimate the typical crash frequency at
various injury severity levels, the results of which are
used to evaluate two safety performance measures:
the index of crash frequency (ICF) and the index of
crash cost (ICC). Equation 1.1 and Equation 1.2 show
a simplified form of these two safety indexes. Full
versions and example calculations of the ICF and ICC
formulas are available in the Indiana SMS guide-
lines (Tarko et al., 2016). A priority list of sites that
need improvement ultimately is prepared from this
evaluation.

ICC ¼
Observed Crash Cost� Expected Crash Costffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Observed Crash Cost Variance
p

þ Expected Crash Cost Variance

ðEq: 1:1Þ

ICF ¼

Observed Crash Frequency

� Expected Crash Frequencyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Observed Crash Frequency Variance

þ Expected Crash Frequency Variance

r ðEq: 1:2Þ

Determining causes: After selecting the high-crash
locations, safety reviews are conducted to determine the
potential causes of the high-crash risk at these loca-
tions. Historical crash records are analyzed to identify
the predominant crash patterns and to determine their
probable causes. On-site visits, including safety checks
and engineering studies, then are conducted to confirm
potential causes and to identify additional safety
deficiencies.

Determining countermeasures: After the safety review
is conducted, the next step is to prepare a list of

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2024/01 1



potential crash causes and a set of safety counter-
measures addressing these causes. For this purpose, the
Federal Highway Administration (FHWA) maintains a
repository of proven safety countermeasures (FHWA,
n.d.). In addition, INDOT’s safety management guide-
lines include an inventory of safety countermeasures to
tackle specific crash causes (Tarko et al., 2016).

Developing safety projects: Various potential safety
countermeasures then are grouped to form safety
projects that are expected to be economically and
technically feasible and effective in improving safety
performance.

Selecting projects for implementation: The next step
includes selecting safety projects based on the prio-
rity ranking obtained in the economic evaluation.
Restricted budgets demand achieving the most signifi-
cant overall safety benefits from the choices made.
From potential projects for multiple HCLs, the selected
projects are expected to be highly cost-effective while
maximizing the overall safety benefit.

Implementing and evaluating projects: The effective-
ness of an implemented safety project in reducing the
number and severity of crashes is considered in the final
step. These results can be used to update the CMFs and
to determine whether the safety project produced a
statistically significant reduction in the number of
crashes at various injury severity levels.

The identification and ranking of HCLs is critical for
the effectiveness of a SMS. If the locations with serious
safety problems are not identified during the identifica-
tion phase, they are not considered again in the current
HEP cycle. To use resources efficiently, only the most
promising HCLs should be selected for safety reviews.

1.2 A Concept of Risk-Based Safety Management

As discussed in the last section, a crash-based SMS
methodically searches for HCLs to identify hazards.
For this purpose, it uses crash count models. These
models, named safety performance functions (SPFs),
are the primary analytical component in current safety
engineering practice. Crash count models estimate the
expected numbers of crashes at specific injury severity
levels for each road of an analyzed road network.
A typical count-based crash model includes the annual
average daily traffic (AADT) and the major geometric
features of each road, such as the number of lanes,
number of legs, traffic signal presence, and functional
classification, among others (AASHTO, 2010). The
expected annual crash frequencies at various injury
severity levels are then compared to the corresponding
number of reported crashes, usually in periods of 3 to
5 years. An excessive number of crashes above the
expected number and the corresponding excessive cost
of crashes thus points out a potential safety problem,
triggering additional investigation (a road safety audit)
to identify the needed road or control improvements.

Past researchers identified a potentially strong hour-
to-hour variation of crash risk (Dutta & Fontaine,
2019; Mohammadnazar et al., 2021; Yuan et al., 2021).

The time-related factors confirmed included weather
conditions (Naik et al., 2016), operating speed
(Fitzpatrick et al., 2017), presence of police enforce-
ment (Tarko, 2009), road closures, and temporal
changes in geometry due to road construction (Chen
& Tarko, 2012), among others. These studies ultimately
uncovered the major weakness of the crash count
models, namely, providing crash count estimates only
in periods of 3 to 5 years. This inability to grasp the
short-term temporal variability of crash risk precludes
consideration of operational countermeasures (e.g.,
variable speed limits or warning messages) about
dangerous driving conditions ahead, such as icy pave-
ments or slow-moving traffic. However, this omission
in the current safety management process can be
addressed thanks to the increased availability of high-
resolution data and improved information technology.

In summary, short-term risk-based safety manage-
ment components should be added to the current crash-
based management practices to identify locations and
periods when operational countermeasures might be
justified to reduce the crash risk. Comprehensive safety
management should use both time-independent geo-
metric features and time-dependent hourly volumes,
operating speeds, and weather conditions. The potential
safety benefits could include better insight into the
crash risk and preventing crashes by real-time monitor-
ing of traffic and environmental conditions in order to
proactively apply operational countermeasures if such
needs are detected.

The emergence of connected and autonomous
vehicles (CAVs) further justifies evaluating crash risk
in short intervals and responding with mitigating
measures if needed. The increased presence of CAVs
is anticipated to significantly affect many aspects of
our transportation systems, including traffic safety,
user accessibility, and urban planning (Fagnant &
Kockelman, 2015; Meyer et al., 2017; Talebpour &
Mahmassani, 2016). Once CAVs are fully implemented,
they will collect a vast amount of travel and safety-
related information that should eventually become
available for engineering use. Furthermore, these
vehicles would comply and adequately respond to
locally broadcast messages. An additional potential
side effect of CAVs could be their positive influence on
the human drivers around them.

Creating analytical tools that capture and process
data into useful information is imperative. For traffic
safety management in particular, the crash count
models currently used for safety management should
be supplemented with risk-based models capable of
predicting crash probability in short intervals. Imple-
menting such tools will allow engineers to monitor the
crash risk to maintain an acceptable level with opera-
tional means such as variable speed limits, advanced
signal warnings, in-vehicle messages, safety-based
rerouting, and modification of the navigation strategies
of CAVs.

This risk-based approach to SMS can complement
and supplement current crash-based SMSs. Crash-
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based monitoring of roads can identify HCLs based on
aggregate data in long periods, while risk-based SMS
can provide a more insightful picture of temporal risk
fluctuation at individual locations. Improving safety at
such locations could be accomplished by applying
operational measures. For example, an analytical tool
could be used to identify the hours during which an
elevated risk of crash exists and the conditions that
cause this high risk. These events are the result of
specific combinations of geometry and time-dependent
factors; therefore, risk estimated in short intervals may
enrich the body of knowledge about interactions
between the geometric elements of roads, such as
curves or ramp intersections, and temporal conditions
such as weather. These insights may lead to better
geometric design and improvement decisions.

On the other hand, risk-based SMS also can improve
the identification and performance evaluation of safety
countermeasures. Risk-based SMS identifies conditions
that cause temporarily elevated crash risk that can be
used as triggers for conducting operational interven-
tions. Estimation of the number of crashes on roads
during periods when potential operational interventions
are active can be accomplished by determining the
volume of crash probabilities in periods when these
interventions are activated. Finally, the crash-based
SMS tools can be applied to perform a benefit/cost
analysis of considered operational countermeasures to
justify their implementation.

1.3 Research Scope

This project determined the data needed and the
research method utilized to obtain risk models for two
selected example types of roads: signalized intersections
and rural freeway segments. The first objective of this
project was to enable the use of the available time-
dependent data sources to support safety management
by identifying and justifying investments that include
traffic control, advisory information, and other opera-
tional countermeasures. To address this need, an hourly
crash risk equation was developed that includes rele-
vant time-related conditions applicable to a large-scale
system. The second objective was achieved by integrat-
ing the proposed risk-based SMS with the existing
crash-based system. This need was addressed by devel-
oping a prototype tool that supports time-dependent
analysis, which can become a component of the inte-
grated safety management process. This work was con-
ducted via a pilot study that demonstrates the method
for selecting two types of roads: rural freeway segments
and signalized intersections. The concept of risk-based
SMS was developed to apply these equations within
the existing framework of decision-making, including
selecting high-risk conditions, identifying countermea-
sures, and evaluating their economic feasibility.

This study is a continuation and expansion of SPR-
4302, which identified promising emerging data sources
of satisfactory quality (Tarko et al., 2021). The current
project refined the crash risk equations developed in

SPR-4302 for two road categories to make them
applicable to the Indiana road network level and
connects the crash risk with the static and temporary
factors represented by available time-dependent data.

The remainder of this report is organized as follows.
Chapter 2 presents the implementation of risk-based
SMS for rural interstate freeway segments and includes
a summary of the data description, methodology,
sample characterization, results, and implications.
Chapter 3 illustrates the similar implementation of
risk-based SMS for signalized intersections. Chapter 4
focuses on implementation of a novel tool for risk-
based SMS, explaining the concepts of data processing
and showing various illustrative examples of using the
tool. Finally, Chapter 5 summarizes the work con-
ducted, emphasizing its implications to safety manage-
ment practices in Indiana, and describes the additional
research needed to move forward with implementation.

1.4 Literature Review

The variation of crash risk across space, time, and
even data aggregation levels was identified (Dutta &
Fontaine, 2019; Mohammadnazar et al., 2021; Yuan
et al., 2021). From their findings, the idea of risk-
based safety management evolved, which uses both
static geometric features and time-dependent factors
to evaluate the change in crash risk over time. In
addition, as high-resolution data collection techni-
ques advanced in the last two decades, time-depen-
dent data have become available in the last two
decades. Many researchers have estimated the prob-
ability and severity of crashes at a disaggregate level
and an abundance of so-called real-time crash
prediction models have been introduced (Ahmed &
Abdel-Aty, 2011; Lee et al., 2003; Oh et al., 2001; Xu
et al., 2012; Yu et al., 2020).

Meanwhile, the methods to identify and assess crash
risk factors have evolved. For instance, a Bayesian
model implemented by a probabilistic neural network
was used to identify hazardous traffic conditions, where
the standard deviation of 5-minute speeds was asso-
ciated with higher crash risk (Oh et al., 2001, 2005).
Other studies applied case-control logistic regression
models to link real-time traffic flow characteristics to
crash probability under different scenarios and collision
types (Abdel-Aty et al., 2004; Pande & Abdel-Aty,
2006; Zheng et al., 2010). Another common approach
involves taking high-risk conditions as a binary
classification problem. Multiple recent studies applied
more machine learning techniques, such as support
vector machine (Wang et al., 2019; Xiao & Liu,
2012), back propagation neural network (Cheng et al.,
2010), extreme machine learning (Li et al., 2017),
convolutional neural network (Yu et al., 2020), and
deep learning (Huang et al., 2020).

The above methods have shown promise in capturing
crash risk changes over disaggregated time scales.
Nevertheless, there are four well-known limitations
when applying these models in a large-scale highway
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network, thereby preventing their use in risk-based
safety management. First, dependence on the heavily
instrumented road segments (Hossain et al., 2019),
which are the primary data source for real-time crash
prediction models. Probe vehicle data such as INRIX
may be a more promising data source for systematic
safety management since it covers all the U.S. interstate
freeways and most state highways (Sharma et al., 2017).
Second, the relationship between crash injury severity
and the time-dependent factors is under-investigated.
The lack of research is due to the rarity of severe
crashes on instrumented road segments. In traditional
count-based analysis, the factors that could lead to
severe crashes differ significantly from those affecting
crash frequency, so the safety effects of time-dependent
factors are expected to differ at multiple injury severity
levels. Third, most of these models focused on instan-
taneous traffic dynamics like traffic volume and speed
but failed to include weather conditions. Considering
the proven significant impacts of weather conditions on
driving behaviors and traffic safety (Yu & Abdel-Aty,
2014), these factors should be included in crash risk
prediction models to avoid a biased estimation of the
speed or volume effects. Lastly, there is a direct
connection between crash occurrences and changes in
traffic dynamics. Therefore, carefully defined offsets for
the pre-crash period are needed to avoid the poten-
tial endogeneity issues caused by inaccurate recorded
crash times.

Past researchers demonstrated the potential of
estimating crash risk in the near-term using safety-
related data collected over short periods. Several
authors linked the short-term crash risk with traffic
characteristics, including traffic volume, operating
speed, average speed, speed variation, and speed differ-
ence between consecutive road segments (Roshandel
et al., 2015; Tarko et al., 2019). Some researchers also
were able to estimate the safety effect of weather
characteristics (Ahmed et al., 2012).

The relationship between speed, weather, traffic, and
pavement conditions and the probability of crash was
investigated in the JTRP research project SPR-4302,
Use of Emerging and Extraordinary Data Sources as
Means to Improve Traffic Safety (Tarko et al., 2021).
Such relationships will help estimate the short-term risk
of crash based on temporary conditions. Aggregating
the risk over more extended periods can yield the
expected number of crashes proactively and can reveal
temporary factors occurring on the road that contribute
to crashes. Within a new paradigm of safety manage-
ment, high numbers of crashes on roads can be
explained by frequent periods experiencing high-risk
conditions.

2. RURAL FREEWAY SEGMENTS

A case study of implementing a risk-based SMS on
Indiana’s rural freeways is presented in this chapter.
The connection between time-dependent factors, crash

probability, and injury severity is assessed for a sample
of freeway segments with available data. The estimated
impacts, including static and time-dependent elements,
are meant to be the foundation of analytical tools for a
system-wide risk-based SMS. This chapter focuses only
on the development of the crash probability and injury
severity models. Chapter 4 describes their application in
specific safety management tasks.

2.1 Data Description

Multiple factors are known to affect traffic safety
performance. Some examples include driver character-
istics, vehicle features and operation, and roadway
attributes. In addition, time-dependent factors that
reflect certain environmental conditions also should be
considered in risk-based SMS (e.g., congestion, adverse
weather, poor lighting, and seasonal behavior such as
summer travel).

This section discusses the available data regarding
fixed and time-dependent CRFs to enhance the
decision-making process behind long-term infrastruc-
ture safety improvements. Special attention is placed on
time-dependent factors previously omitted in safety
management. This section is focused on data prepara-
tion for statistical analysis and risk-based SMS. A more
in-depth description of the data sources can be found in
the final report for JTRP SPR-4302 (Tarko et al.,
2021).

Data from five types of CRFs were collected. Crash
records were extracted from the Automated Reporting
Information Exchange System (ARIES). The operating
travel speeds at the segment level were assembled from
the National Performance Management Research Data
Set (NPMRDS). Hourly traffic volumes and vehicle
classifications were obtained from INDOT’s Traffic
Count Database System (TCDS). Weather conditions
were accessed via the Indiana State Climate Office
(INClimate) at Purdue University. Roadway character-
istics were obtained from INDOT’s Road Network
Data (RND) supplemented with Google Earth’s
historical imagery.

Data from other CRFs were also pursued and their
potential benefits were described. However, these data
sources are not ready for systemwide implementation.
Examples of such data include police citations and road
construction work orders.

2.1.1 Crash Records

Police crash reports were accessed from the ARIES
database, which includes detailed information about
the crash, road site, involved people, and vehicles.
The geographical coordinates provided were used to
assign individual crashes to segments for analysis.
The reported crash time was used as well to determine
the time-dependent factors before the stated crash
hour. In total, there were 2,091 crashes assigned to
the selected roads for 5 years (2014 through 2018).
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Based on the crash injury severity scale, 85.8% of the
crashes were classified as property damage only (PDO),
6.6% as a potential or minor injury, and 7.6% as fatal
or incapacitating.

2.1.2 Speed Data

Operating travel speeds were obtained from
NPMRDS. Established in 2013 and later updated in
2017, NPMRDS condenses the travel times along all
the road segments in the National Highway System
(NHS). The NPMRDS segments are systematically
defined between two consecutive ramps. The travel
times for all vehicles, passenger cars, and trucks are
reported separately every 5 minutes. This study used
the travel times for all the vehicles to calculate the 5-
minute speeds, which then were aggregated to one
hour, and multiple statistics then were created to
characterize the distribution of speed within each
hour for each segment. The final set of speed
characteristics for statistical analysis included the
average hourly speed, the temporal standard devia-
tion of speed, and the speed trend.

2.1.3 Traffic Counts

There are 70 permanent traffic count stations on
Indiana’s interstate freeways. All the selected seg-
ments have nearby stations. However, to implement a
systematic risk-based safety evaluation, short-term
traffic volume prediction models were developed for
different types of highways. These models estimate
the hourly volumes using system-wide predictors,
such as the NPMRDS’s probe density, operating
speed characteristics, weather conditions, roadway
geometry, and time indicators. Additional modeling
details and an assessment of the results of this
instrumental model are available in Tarko et al.,
2021. These models allow for predicting hourly
volumes on selected roads without counting stations.
An effort to estimate hourly traffic volumes on low-
classified roads was also part of this study, and the
results are presented in Appendix A.

2.1.4 Weather Data

INClimate archives weather observations recorded
throughout Indiana and its neighboring states.
Two datasets, Parameter-elevation Relationships on
Independent Slopes Model (PRISM) and Multi-sensor
Precipitation Estimates (MPE), are provided by
INClimate. PRISM is a gridded data set with virtual
weather stations evenly spaced every 2.5 miles that
contains information about the distribution of daily
ground temperatures. These data are previously spa-
tially interpolated with observed temperatures using
statistical parameterization algorithms accounting for
terrain influences. The MPE data set provides hourly
liquid precipitation amounts. Like PRISM, MPE has
virtual stations evenly spaced every 2.5 miles. MPE’s

data combines observational precipitation data with
derived estimates from the Doppler radar network and
satellites to offer a gridded characterization of pre-
cipitation. This network of high-density gridded
weather stations permits deriving hourly weather
conditions on selected segments. From the 5,724 virtual
gridded weather stations in Indiana, hourly precipita-
tion and temperature data are obtained using inter-
polation. Details about the interpolation process are
presented in a previous publication (Tarko et al., 2021).
The weather data are collected with ground stations,
satellites, and aerial radar and then extrapolated and
integrated accounting for elevation, topography, rain
shadows, temperature inversions, and coastal effects.
The available gridded data include hourly precipitation
and temperature daily statistics with additional pieces
of information possible.

2.1.5 Road Inventory

The existing aggregate geometry and traffic data
from INDOT’s road inventory data sets were supple-
mented with other road characteristics gathered from
Google Earth’s historical imagery. The collected data
included cross-sectional elements, horizontal alignment,
pavement, roadside elements, signage, and road light-
ing. A comparison of the available data in the sample
and at the system level was made for the system-wide
implementation of risk-based SMS. Among the CRFs
available at the system level, the factors that were
identified as needing more data collection included the
presence of artificial lighting, type of road surface
(asphalt or concrete), and offset distance to a barrier.
While other variables are available in INDOT’s
inventory, additional preparation is required before
they are suitable for estimating crash risk. These
variables include overpass presence, barrier type and
location in relation to the road, outside shoulder width,
number of barrier-ends facing the travel direction,
horizontal curvature, presence, and type of ramps, and
posted speed limit.

2.1.6 Additional Data Preparation

Information from various data sources was linked to
produce a data set used for statistical analysis. Once
the data linking process was complete, the resulting
modeling data set was formed by two types of
observations: crashes and non-crashes. A 1:30 ratio
between the two types of records was enforced via
sampling non-crashes based on the number of crashes.
Since crash observations are uncommon compared to
non-crashes, this sampling was needed to estimate the
effects of the contributing factors on the hourly crash
risk and injury severity. The offset of the fitted model
was later adjusted to represent the original conditions
before the sampling.

The different data sources were linked and integrated
as the input for the risk-based SMS tool. Two data sets
were created: (1) time-independent data, such as road
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characteristics, and (2) time-dependent data, such as
weather information and speed. The time-dependent
data was preprocessed to provide the information in a
one-hour resolution. If needed, this resolution can be
adjusted to 1 week, month, and year. However, the
larger the aggregation level used, the closer the model
becomes count-based rather than risk-based.

2.2 Analysis Methods

Three models were used to estimate the safety effects
of the time-dependent and fixed predictors (sequential
binary logit, multilevel logit, and mixed logit), all of
which are variations of standard logistic regression.
A brief description of each model is provided in this
section as well as a discussion of their advantages and
limitations. Lastly, a comparison strategy to balance
the performance of all three types of models is
introduced.

Due to the rarity of crashes when measured in one-
hour periods, it is more reasonable to model the
probability of a crash as a binary response (i.e., whether
the crash happened or not). Therefore, when there are
N (N . 1) crashes within one hour on the same road
segment, only the first crash was used for analysis. It
was assumed that the following crashes might be
partially, if not totally, influenced by the first incident.
This rare case accounts for less than 0.5% of observa-
tions and is outside of the scope of this study.

2.2.1 Sequential Binary Logit

The sequential binary logit model is a helpful
regression approach for discrete dependent variables.
For dichotomous (i.e., having two possible values)
outcomes, this method estimates the effect of indepen-
dent predictors on the probability of a safety event.
In our case, an initial model estimates the probability
of the hourly crash occurrence, while a second model
estimates the effects on severe injury given crash
occurrence. The logit function is the LN of the odds
ratio and is represented as a function of the indepen-
dent predictions in the following form.

Yi~ logitðPiÞ~ ln
Pi

1� Pi

� �
~b0z

XK

k~1

bkXk ðEq: 2:1Þ

Pi~
expðb0z

PK
k~1 bk,iXk,iÞ

1z exp b0z
K
k~1 bk,iXk,i )

ðEq: 2:2Þ
ð Þ

P
where b0 is the intercept constant and the b1, …, bK

are the unknown parameters corresponding with the
explanatory variables (Xk 5 1, …, Xk). These unknown
parameters are usually calculated using maximum
likelihood methods. Once estimated, these parameters
can be used to calculate the probability that the
outcome takes the value of 1 as a function of covariates.

2.2.2 Multilevel Logit

Multilevel models are used where data are hierarchi-
cally organized. In this study, a two-level organizational
model is proposed. The first level represents the safety
effects of the time-dependent predictors, while the
second upper level focuses on the effects of the roadway
characteristics. The random effects, estimated as the
variance components, are the model parameters beli-
eved to vary between the higher-level units. In contrast,
the fixed effects are the estimates that are modeled to
not vary between the higher-level units.

2.2.3 Mixed Logit

The hourly crash probability at various injury
severity levels is estimated as a function of the static
roadway characteristics and time-dependent factors. To
do so, a sequential binary mixed logit approach is used.
This method fits two consecutive models: (1) a model of
the hourly crash probability with a crash vs. no-crash
binary response and (2), a model of the probability of
severe crashes (injury or fatal) conditioned on crash
occurrence. The latter model uses a binary severe
outcome vs. not severe outcome.

The mixed logit (or random-parameters logit)
model addresses several weaknesses of the traditional
logit model by allowing the parameter values to vary
across observations according to some pre-specified
distribution. The conventional binary logit and mixed
logit models are illustrated in Equation 2.3 and
Equation 2.4.

Pn~
expðXbÞ

1z expðXbÞ ðEq: 2:3Þ

Pmixed
n ~

ð
Pnf ðbj Þdb ðEq: 2:4Þ

where P is the probability of crash (or severe outcome if
considering the injury severity), X are the contributing
factors, and b are the estimated parameters, f(b|j) is the
density function of b with j referring to a vector of
parameters of that density function (e.g., for normal
distribution, j 5 (m, s2)). The selection of significant
variables is based on the overall goodness of fit of the
model in terms of their AIC value and individual t-test
statistics.

The SBML model was chosen over the ordered
model, the most common modeling approach for an
ordinal response such as crash injury severity. However,
the main drawback of ordered models is that the
parameter estimates, and significant explanatory vari-
ables are the same at all injury severity levels. Even
though the parameter estimates of each explanatory
variable could be different across different crash sever-
ity levels in a generalized ordered logit model, the set of
significant explanatory variables is still assumed to be
the same across different injury severity levels.
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2.2.4 Comparison Strategy

The three models described previously were com-
pared based on their log-likelihood. Specifically, the
Akaike Information Criterion (AIC) and the Like-
lihood Ration Test (LRT) were used to compare the
models. The lower the AIC, the better the use of the
information and therefore the more preferred model.
In terms of the LRT, two nested models, such as binary
logit vs. multilevel logit and binary logit vs. mixed logit,
were compared based on the ratio of their likelihoods,
which followed a chi-square distribution with degrees of
freedom equal to the number of additional parameters.

2.3 Empirical Setting

A sample of 133 one-way miles of rural freeways was
selected for this study. The sample was comprised of
approximately 5% of the total one-way mileage of rural
interstates. These segments were chosen based on their
data availability, mainly for observed short-term traffic
volumes. The spatial distribution of the sample is
presented in Figure 2.1. Out of the 133 miles of selected
road segments, there were 25 miles on I-64, 23 miles on
I-65, 39 miles on I-69, 40 miles on I-70, and 6 miles on
I-74. There were 2,091 crashes assigned to the selected
road sections between 2014 and 2018.

In past studies that used disaggregated traffic
data, the analysis segment lengths were determined
mainly by the spacing of the loop detectors. The chosen
analysis segment lengths varied from 0.50 miles on I-
880 in the San Francisco Bay area of California (Xu et
al., 2013), 0.40 miles on an urban expressway in
Shanghai (Yu et al., 2020), and 0.95 miles on I-235
in Des Moines, Iowa (Huang et al., 2020). In this
current study, however, the selected road sections
were divided into 532 segments with a fixed length
of 0.25 miles. This segmentation was chosen for
several reasons. First, this segmentation enabled the
ability to reflect sporadic changes in roadway
characteristics, which can be diminished with a
larger segmentation. Second, on monotonous high-
ways, it has been found that drivers can see as far as
0.28 miles under clear weather conditions. Lastly,
this segmentation permits a quick transfer of the
results to Indiana’s current safety management
practice.

2.4 Results and Discussion

Several factors were found to affect hourly crash risk
and severity. In short, hourly crash risk is increased
by hourly volume, AADT by vehicle type, horizontal
curves, barriers, lower speed limits, the standard
deviation of speed, and the interaction of low-intensity
rain and freezing temperatures. Additional factors that
increase short-term crash risk include auxiliary lanes,
downtrend speeds, and congestion while overpassing
roads, average speed, and uptrend speeds were found to
enhance safety. The conditional probability of a severe

Figure 2.1 Sample road segments used in the crash risk
analysis of rural freeways.

outcome is increased by mild curves, average speed, the
standard deviation of speed, downtrend speeds, and
intermediate congestion while lighting and lower speed
limits were found to reduce crash severity.

2.4.1 Effects on the Crash Probability

Table 2.1 shows the parameter estimates, standard
errors, and the AIC values of the hourly crash
probability models. In addition to the random para-
meters (mixed logit) model, the fixed and random
effects (multilevel logit) models were fitted to compare
their performance. The random effects model produced
the lowest AIC, followed by the random parameters,
and fixed effects models. The random effects model’s
performance may have been due to its capacity to
reflect the hierarchical data structure.

Hourly crash risk is increased by hourly volume,
AADT by vehicle type, horizontal curves, barriers,
lower speed limits, the standard deviation of speed, and
the interaction of low-intensity rain and freezing
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TABLE 2.1
Parameter estimates of the hourly probability of crash models

Effect Estimate Std. Error Estimate Std. Error Estimate Std. Error

Intercept 2.048 0.832 1.845 1.168 2.293 0.922

Hourly Traffic Volume (1,000 veh/h) 0.306 0.096 0.338 0.098 0.305 0.099

AADT Cars (1,000 veh/day) 0.009 0.005 – – 0.009 0.005

AADT Trucks (1,000 veh/day) 0.056 0.009 0.075 0.018 0.060 0.010

Overpassing Road -0.193 0.079 – – -0.210 0.082

Moderate Curve (5.5–13.9 degrees) 0.132 0.078 – – 0.138 0.081

Sharp Curve (14 degrees or more) 0.232 0.074 – – 0.249 0.077

Proportion with Median Cable Barrier 0.196 0.089 – – 0.206 0.090

Proportion with Median Guardrail -0.720 0.239 -1.035 0.444 -0.749 0.249

Proportion with Roadside Guardrail 0.713 0.090 0.657 0.228 0.740 0.092

Median Barrier Offset , 30 ft -0.123 0.051 – – -0.122 0.053

Proportion with Concrete Pavement 0.512 0.085 0.465 0.203 0.515 0.092

Proportion with Entering Auxiliary Lane 0.559 0.154 – – 0.545 0.173

Proportion with Exiting Auxiliary Lane 1.465 0.222 1.443 0.656 1.488 0.238

Speed Limit Reduced by 5 mph 0.304 0.087 – – 0.306 0.092

Average Roadside Shoulder Width (ft) 0.118 0.034 0.140 0.078 0.122 0.037

Light Rain (precipitation , 0.098 in) 0.250 0.090 0.214 0.094 0.248 0.094

Freezing Temperature (T # 32Fu) 0.246 0.063 0.235 0.065 0.220 0.068

Ice Conditions 0.549 0.145 0.544 0.154 0.624 0.155

Average Hourly Travel Speed (mph) -0.141 0.011 -0.146 0.012 -0.146 0.012

SD of Hourly Travel Speed (mph) 0.058 0.010 0.058 0.011 0.054 0.013

Hourly Speed Trend -0.262 0.037 -0.275 0.039 -0.391 0.059

SD of Speed Trend – – – – 0.556 0.127

Downtrend Speed (slope , -5/60) 0.194 0.057 0.209 0.059 0.116 0.065

Intermediate Traffic -4.976 0.786 -4.879 0.841 -4.619 0.900

Congested Traffic -5.289 0.850 -5.097 0.919 -5.679 0.940

Speed Under Intermediate Traffic (mph) 0.104 0.013 0.102 0.014 0.097 0.015

Speed Under Congested Traffic (mph) 0.095 0.024 0.082 0.027 0.106 0.027

Friday 0.148 0.071 0.138 0.071 0.142 0.073

Weekend 0.117 0.054 0.156 0.068 0.124 0.056

Year 5 2014 -0.535 0.064 -0.568 0.063 -0.844 0.189

SD of Year 5 2014 – – – – 0.842 0.266

Year 5 2015 -0.176 0.069 -0.190 0.069 -0.186 0.072

Year 5 2017 0.115 0.069 – – 0.121 0.071

06:00 AM–11:59 AM 0.541 0.088 0.504 0.091 0.535 0.090

12:00 PM–17:59 PM 0.600 0.110 0.531 0.113 0.602 0.115

18:00 PM–23:59 PM 0.462 0.086 0.431 0.088 0.464 0.089

Covariance Estimate for Segment ID – – 1.087 0.106 – –

AIC (smaller is better) 15,743.84 14,781.16 15,740

8 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2024/01

temperatures. These findings concur with past research-
ers (Dutta & Fontaine, 2019; Roshandel et al., 2015;
Zou & Tarko, 2016). Additional factors that were
found to increase short-term crash risk included auxi-
liary lanes, downtrend speeds, and congestion while
overpassing roads, average speed, and uptrend speeds
were found to enhance safety.

Most of the time-dependent factors remained
significant after adding random effects (multilevel
logit) and random parameters (mixed logit). How-
ever, some static roadway characteristics were no
longer statistically significant (i.e., passenger cars’
AADT, horizontal curvature, median cable barrier
presence, median barrier offset, entering auxiliary
lane, and speed limit). Therefore, their estimates
from the fixed effects model should be used carefully
to reflect local roadway conditions from the selected
sample.

Two parameters (the hourly speed trend and the 2014
indicator) were found to follow a normal distribution.
For the 2014 indicator, 84% of the observations
had a negative estimate (lower crash risk) while
16% had a positive parameter estimate. For the hourly
speed trend, 76% of the records had a negative
parameter estimate while 24% had a positive estimate
(higher crash risk). These random parameters may
reflect local conditions (e.g., road construction or
temporal variations such as forming and dispersion of
queues).

2.4.2 Effects on Injury Severity

Compared to the crash probability model, fewer
predictors were found to affect injury severity. Table
2.2 presents the parameter estimates, standard errors,
t-test statistics, and p-values of the binary logit model



TABLE 2.2
Parameter estimates of the conditional probability of severe crash model

Effect Estimate Std. Error t value Pr. . |t|

Intercept

Proportion with Median Guardrail

Mild Curve (3.5–5.4 degrees)

Speed Limit Reduced by 5 mph

Segment Proportion with Lighting

Temperature (F)

Ice Conditions

SD of Hourly Travel Speed (mph)

Downtrend Speed (slope , -5/60)

Intermediate Traffic

Speed Under Intermediate Traffic (mph)

Friday

-2.6924

1.3215

0.5946

-0.6134

-1.1242

0.0056

-0.7939

0.1057

0.3794

-1.4939

0.0312

-0.2896

0.1993

0.4725

0.3202

0.2552

0.5530

0.0030

0.3183

0.0176

0.1372

0.9153

0.0172

0.1900

-13.51

2.80

1.86

-2.40

-2.03

1.88

-2.49

6.01

2.76

-1.63

1.81

-1.52

,.0001

0.0052

0.0635

0.0163

0.0422

0.0604

0.0127

,.0001

0.0058

0.1028

0.0704

0.1277
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for the probability of a severe outcome. Both the random
effects and the random parameters were tested and were
found to be not significant. Therefore, for this study, the
fixed effects model was preferred. However, a larger
sample may help obtain significant random parameters
to create a third model to separate fatal and incapacitat-
ing crashes from non-incapacitating crashes.

The conditional probability of a severe outcome
increased with the presence of a median guardrail
(typical around bridges), mild curves, average speed,
standard deviation of hourly speed, downtrend speeds,
and intermediate congestion while lighting and lower
speed limits reduced crash severity. The presence of icy
conditions (the combination of precipitation and near-
freezing temperatures) had a negative parameter
estimate (reduced severity), which may be due to risk
compensation as drivers adjust their operating speeds
to account for inclement weather conditions. The
parameter estimates of the hourly temperature and
Friday indicators were not included since they may
reflect local conditions in the sample.

2.4.3 Risk-Based SMS Application

The concept of risk-based safety management holds
real promise. If disaggregate safety analysis can be
used to supplement crash-based safety management
by estimating the short-term crash risk performance
of a target road segment, the estimated impacts,
including the static and time-dependent elements,
potentially can be valuable for multiple safety
management tasks. While the presence of random
parameters was confirmed, the application of such
models is expensive, and their practical interpretation
is cumbersome. Therefore, fixed effects models were
selected for the prototype tool in this study.

This model calculates the hourly probability of a
crash on a given segment using a logit form as described
in Equation 2.5 and Equation 2.6.

Pi~
eb0 +b1X1, i + ���+ brXr, i

1+ eb0 + b1X1, i + ���+ brXr, i
ðEq: 2:5Þ

where Pi is the hourly probability of crash on segment-
hour i, b are a set of estimated coefficients, and X are a
set of independent predictor variables.

b0 + b1X1,i + � � � + brXr,i=

_ 3:9856+ 0:299484 � volume1,000+ 0:010069

� aadt1,000�car + 0:057019 � aadt1,000�truck
_ 0:162261 �Overpass

+ 0:145457 � curve�CD + 0:225796 � curve�EF + 0:190715 � BCAM�p

_ 0:645816 � BGUM�P + 0:681674 � BGUR�P
_ 0:12285 � off�near

_ 0:153395 �medhazard + 0:083025 � roadhazard + 0:518069

� PAVCO�p+ 0:550125 � ramp�in�p + 1:495065 � ramp�out�p + 0:29602

� slim 65+ 0:122417 � SHRI�w+ 0:255362 � light�rain + 0:24604

� freeze+ 0:544991 � rainfreeze+ 0:058592 � speed StdDev

_ 0:261321 � beta speed + 0:196682 � downtrend
_ 0:140161

� speed Mean+ 0:102853 � intermspeed + 0:093825 � congspeed

_ 4:926306 � intermediate
_ 5:220979 � congested + 0:133184

� friday+ 0:14076 � sunday
_ 0:535518 � year 2014

_ 0:176977

� year 2015+ 0:115983 � year 2017+ 0:544993 �morning

+ 0:604009 � afternoon+ 0:464139 � evening

(Eq. 2.6)

6

where,

volume1,000 is the hourly traffic volume in 1,000s
veh/h,

aadt1,000_car is the passenger vehicle’s AADT in
1,000s veh/day,

aadt1,000_truck is the combined truck’s AADT in
1,000s veh/day,

Overpass is 1 if there is an overpassing road and 0
otherwise,

Curve_CD is the proportion of segment length with
moderate curve (5.5–13.9 degrees),

Curve_EF is the proportion of segment length with
sharp curve (14 or more degrees),

BCAM_p is the proportion of segment length with
median cable barrier,

BGUM_p is the proportion of segment length with
median guardrail,



BGUR_p is the proportion of segment length with
roadside guardrail,
off_near is 1 if the barrier offset is 11 ft or less and 0
otherwise,
medhazard is the number of median hazards (i.e.,
beginning of barriers),
roadhazard is the number of roadside hazards,
PAVCO_p is the proportion of segment length with
concrete pavement,
ramp_in_p is the proportion of segment length with
auxiliary lane corresponding to entering ramp,
ramp_out_p is the proportion of segment length with
auxiliary lane corresponding to exiting ramp,
slim65 is 1 if the maximum posted speed limit is 65
mph 0 otherwise,
SHRI_w is the average roadside shoulder width in ft,
light_rain is 1 if there is precipitation of 0.1 in/h,
freeze is 1 if the air temperature is 32Fu or less and 0
otherwise,
rainfreeze is 1 if there is any precipitation under
freezing temperatures and 0 otherwise, speed_StdDev
is the standard deviation of travel speeds in mph,
beta_speed is the temporal speed trend,
downtrend is 1 if speed is reducing at a rate equal or
higher than 5 mph/h,
speed_Mean is the average operating travel speed in
mph,
intermspeed is the interaction of travel speed and
intermediate traffic indicator,
congspeed is the interaction of travel speed and
congested traffic indicator,
intermediate is 1 if the congestion index (9) is
between 0.1 and 0.5 and 0 otherwise,
congested is 1 if the congestion index is higher than 0.5,
Friday/Sunday are day of the week indicators,
year_2014/year_2015/year_2017 are year indicators,
and
morning/afternoon/evening are time of day indicators.

Similarly, the second model, which uses the same
logit form (Equation 2.1), calculates the hourly prob-
ability of a severe outcome (injury or fatal) on a given
segment conditioned on crash occurrence. This model is
shown in Equation 2.7.

b0 + b1X1,i + � � � + brXr,i=

_ 2:692599+ 1:321856 � BGUM p+ 0:594525 � curve B

_ 0:613392 � slim 65
_ 1:124153 � Light p+ 0:005573 � temp

_ 0:793718 � rainfreeze+ 0:105718 � speed StdDev+ 0:379398

� downtrend
_ 1:493624 � intermediate+ 0:031159 � intermspeed

_ 0:28966 � friday

(Eq. 2.7)

where,
Curve_B is the proportion of segment length with a
mild curve (3.5–5.4 degrees),
Light_p is the proportion of segment length with
artificial lighting,

temp is the air temperature in F, and

all other variables as described before.

3. SIGNALIZED INTERSECTIONS

The case study of implementing a risk-based SMS on
Indiana’s signalized intersections is presented in this
chapter. Three typical crash-generating scenarios at
signalized intersections were identified: same-direction
(SD) crashes, opposite-direction (OD) crashes, and
right-angle (RA) crashes. The time-dependent and fixed
factors safety effects can be estimated with separate
models. Due to the lack of available data, however,
these analysis results will not be implemented system-
wide. The potential implementation suggestion and
steps are presented here with several in-sample simula-
tion examples.

3.1 Data Preparation

The time-dependent safety performance at signalized
intersections can be affected by various factors, as
analyzed in JTRP Project SPR-4302 (Tarko et al.,
2021), where the detailed description of the data sources
were presented. Although the analysis of signalized
intersections shares some common data sources as the
analysis of rural freeway segments, some of the data
preparation processes are different. This chapter con-
sists of three main sections: general data description,
directional volume data preparation, and signal setting
data preparation.

3.1.1 General Data Description

In general, the data preparation for risk-based safety
performance analysis on signalized intersections
involved six major data sources: crash, weather, speed,
detector data, signal settings, and geometry.

3.1.1.1 Crash. The crash data in this analysis were
accessed from the ARIES database, which is where the
police reports for each crash are available. Apart from
the typical collected crash information, this study also
labelled the directional movements of the involved
vehicles in the crash based on crash narratives or crash
diagrams. Figure 3.1 shows a typical crash diagram
from a police report. It could be inferred from the
diagram that Unit2 was traveling southbound and
attempted to make the left turn when it hit Unit1
(traveling northbound) and then had a secondary
collision with Unit3. To simplify the problem, this
study only considered the first collision manner and the
major involved traffic participants of the collision. The
directional movements of the example crash in Figure
3.1 were recorded as Unit1-NT (northbound through)
and Unit2-SL (southbound left turn). These directional
movement data were later used to link the corres-
ponding volume, speed, and signal settings.
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Figure 3.1 Typical crash diagram (OD collision example).
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3.1.1.2 Weather. The weather data for signalized
intersections utilize the same sources and interpolating
methods as described for rural freeway segments.

3.1.1.3 Speed. Different from rural freeway segment
data, the speed data for signalized intersections comes
from INRIX, which provides better coverage of the
road segments and is precise to the minute level. These
GPS probe vehicle-based speed data are collected every
60 seconds and the average length of the data collecting
segments is 0.5 mile. Because the INRIX speed data are
collected from GPS probe vehicles or cell phones, there
are certain time periods where there are no obser-
vations. The INRIX speed data table includes the
location (INRIX segment ID), date, epoch, length,
speed, and data quality index. The disadvantage of the
INRIX speed data is that it only updates the segmen-
tations every six months, which therefore produced
three different shapefiles in the studied year of 2018.
The segment lengths among the different shapefiles
were slightly different, but this study assumed that the
speeds from those segments were comparable.

3.1.1.4 Detector data. The research team received
the raw detector data and the detector feature table
from INDOT. Since INDOT connects its signalized
intersections data to their system gradually during the
project period, not all of the data were available at the
same time. There were raw detector logging data for
about 300 intersections during the year 2018. The
detector feature table that recorded the location and
operating status of the detectors was also provided to
the research team. Connecting the logging data and the
detector feature table yielded 130 intersections with
complete detector data. The detailed data preparation
steps are described in Section 3.1.2.

3.1.1.5 Signal setting. The signal settings of the
targeted intersections were collected with help from the

Indianapolis Traffic Management Center. Among the
130 signalized intersections with complete detector
data, there were 115 intersections with credible signal
setting data. The other intersections were removed or
upgraded after the year 2018. The detailed data
preparation steps are described in Section 3.1.3.

3.1.1.6 Geometry. The geometry data were collected
from INDOT’s road inventory data sets supplemented
with other road characteristics gathered from Google
Earth’s historical imagery. The manually collected data
included lane settings (e.g., lane number, left turn only
lane, exclusive right turn lane), intersection scale (e.g.,
distance between stop lines, skewness), and approach-
ing segment characteristics (e.g., close access points,
flashing yellow signs, speed limits, crosswalks).

3.1.2 Volume Data Preparation

The volume data preparation followed the procedure
shown in Figure 3.2. The raw logging data recorded all
the operations of the detectors precisely within 0.1
second, including phase on/off, gap out, green splits,
etc. The detector on and off were used to determine the
vehicle counts for each detector.

One major challenge of using detector data was that
the loop detector may not have performed well across
the entire year 2018. Many of the detectors were broken
or were outputting unreasonable values during the
studied period. To overcome this problem, a missing
data imputation program was developed.

To predict hourly vehicle counts, three kinds of time
series models were tested: (1) the seasonal trend
decomposing using the LOESS model (Stlm); (2) the
Harmonic regression model (HamReg); and (3) the
Trigonometric seasonality, Box-Cox transformation,
ARMA errors, and Trend and Seasonal components
model (TBATS). One example of their prediction
across 1 week is illustrated in Figure 3.3. Because all
three models performed well in capturing the volume
trends across time, the most calculation-efficient
method, Stlm, was selected for application on all the
detector data. Figure 3.4 shows the hourly volume
profile across 5 weeks where the dashed line is the
predicted missing volume.

In the last step, the detectors’ hourly vehicle counts
were transferred into directional volumes based on the
detectors’ feature table and manual checking from the
Google Map historical images. Figure 3.5 shows one
typical example of the settings of detectors at signalized
intersections. The advanced detectors on the upstream
usually counted all the through and left turn volume
while the detector at the stop lines counted the left turn
or through movements. Because right turn traffic is
seldom controlled by signals, there were very few speci-
fic detectors for right turn traffic. To compare the
volumes among the intersections consistently, the direc-
tional volume only considered left turn traffic and
through/right turn traffic combined. For each move-
ment (e.g., ET represents eastbound through/right turn



Figure 3.2 Volume data preparation steps.

Figure 3.3 Predicted time series models vs. observed vehicle counts across 1 week.

Figure 3.4 Missing volume prediction example.
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traffic), the directional volumes were obtained by
summing up the vehicle counts from all the correspond-
ing detectors.

3.1.3 Signal Setting Data Preparation

The obtained signal settings were saved in Microsoft
Excel files in the following sheets: (1) unit and con-
figuration, (2) phase & overlaps, (3) coordination, (4)
preempt, (5) TOD, and (6) detector options, which
provided abundant signal settings information. Two
signal settings were used in this study: (1) local phase
settings and (2) coordination settings.

The local phase settings were obtained mainly from
controller timing data. Table 3.1 shows one typical
example of the controller timing data. The first row is
the phase number following the general application
setting of the dual-ring control scheme (i.e., phases 2

and 6 are the through movements on the major street,
phases 1 and 5 are the left turn movements on the major
street, and phases 4 and 8 are the through movements
on the side street). The other rows present the settings
of the corresponding phase. For example, the second
row is the minimum green time for each phase. The two
zeros for phases 3 and 7 imply that the example
intersection in Table 3.1 does not have protected phases
for the side street’s left turn movements.

The coordination settings are inferred from the
coordination patterns and day plans. Figure 3.6 and
Figure 3.7 show one example of the coordination
settings at signalized intersections. In this example,
Figure 3.6 shows three coordination patterns with the
same cycle length (90 seconds) but different offsets (79,
41, 78) and different phase splits. Figure 3.8 shows the
day plans of the targeted intersection with day plan 1
for weekdays and day plan 2 for weekends. For each



Figure 3.5 Typical settings of detectors at signalized intersections.
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day plan, the coordination patterns were performed
differently according to the day plan settings. For
example, during the weekdays, pattern 2 took effect at
6:00 AM from free mode (pattern 99 or 0) and then
switched to pattern 1 at 9:00 AM; it switched to pattern
3 at 15:00 PM and then to pattern 1 at 18:00 PM; and
finally, it switched to the free mode at 22:00 PM until
the next day. All the coordination settings were coded
and assigned to the crash and non-crash samples
according to their occurrence hours.

3.2 Analysis Methods

The analysis of signalized intersections in this study
was more complex considering the diversity of the crash
generating scenarios compared to rural freeway seg-
ments. The crashes related to signalized intersections
were first classified into three typical scenarios and then
analyzed following a similar strategy to the one for
rural freeway segments.

To estimate the safety effects of time-dependent
and fixed predictors, variations of logistic regression
models were tested; but considering the application of

the models, only the sequential binary logit models
with fixed effects were adopted, which are discussed in
this chapter. The statistical settings of the sequential
binary logit models are presented in Section 2.2.1.

3.2.1 Crash Generating Scenarios

Unlike crashes on segments, crashes that occur at
signalized intersections can vary across each other on
maneuver, causality, and involved traffic participants.
For example, an RA crash that involves two vehicles
from different segments is very different from a rear-
end crash on the same approaching segment to the
intersection. When considering the exposure factor of
crash occurrence, usually traffic volume, an RA crash
analysis should use the two involved traffic volumes,
while the rear-end crash should use only the volume
from the one segment.

To discompose the variation of crashes at the
signalized intersections while maintaining enough crash
samples for analysis, three typical crash generating
scenarios were proposed in this study based on the basic
logic of a dual-ring signal control scheme (Figure 3.8).



Seven types of crashes were identified through this
control logic, and they were grouped into three
general categories: SD crashes, OD crashes, and RA
crashes.

Same-direction collision scenarios

N SDS Same phase: 1-1, 2-2, 3-3, 4-4, 5-5, 6-6, 7-7, 8-8
N SDC Concurrent phases: 1-6, 2-5, 3-8, 4-7

Opposite-direction collision scenario

N ODC Consecutive phases: 1-2, 5-6, 3-4, 7-8

N ODS Same phase: 2-6, 4-8

Right-angle collision scenarios

N RAN Cross-barrier with no phase skipped: 4-1, 4-5, 8-1,
8-5, 2-3, 2-7, 6-3, 6-7

N RAL Cross-barrier with left-turn phase skipped: 2-4, 2-8,
6-4, 6-8

N RAT Cross-barrier with through phase skipped: 1-3, 1-7,
5-3, 5-7

The typical movements of the seven collision
scenarios are shown in Figure 3.9. The proposed three
general crash generating scenarios represent three
typical collision scenarios at signalized intersections.

N The SD crash scenario represents the most prevailing
type of crash at signalized intersections while rear-end
and sideswipe crashes were more prevalent at the
approaching segments. The occurrence of such crashes
is expected to be mostly affected by the traffic volume,
dynamic queueing status, coordination, and operating
speed on the segment.

N The OD crashes scenario includes both ODC and ODS,
but according to the distribution of crash records, most
of the ODCs crashes between the through traffic and the
OD’s left turn traffic. The occurrence of such crashes is
expected to be mostly affected by signal settings
(protected or permissive left turn) and exposure (through
traffic and left turn traffic).

N The right-angle crashes represent crashes between the
main street traffic and the side street traffic. Although

TABLE 3.1
Typical controller timing data

Phase 1 2 3 4 5 6 7 8

Min Green 7 10 0 7 7 10 0 7

Bike Min Green 0 0 0 0 0 0 0 0

Cond Service Min Green 0 0 0 0 0 0 0 0

Delay Green 0 0 0 0 0 0 0 0

Walk 0 8 0 9 0 8 0 9

Walk2 0 0 0 0 0 0 0 0

Walk Max 0 0 0 0 0 0 0 0

Ped Clear 0 25 0 30 0 25 0 30

Ped Clear 2 0 0 0 0 0 0 0 0

Ped Clear Max 0 0 0 0 0 0 0 0

Veh Ext 3.0 3.0 0.0 3.0 3.0 3.0 0.0 3.0

Veh Ext2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max 1 20 40 0 20 20 40 0 20

Max 2 20 60 0 40 20 60 0 40

Max 3 0 0 0 0 0 0 0 0

Dynamic Max 0 0 0 0 0 0 0 0

Dynamic Max Step 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Yellow 3.6 3.6 0.0 3.6 3.6 3.6 3.0 3.6

Red Clear 2.0 1.8 0.0 1.8 2.0 1.8 0.0 1.8

Red Max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Red Revert 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Actuations Before 0 0 0 0 0 0 0 0

Added Initial 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max Initial 0 0 0 0 0 0 0 0

Time Before Reduce 0 0 0 0 0 0 0 0

Cars Before Reduce 0 0 0 0 0 0 0 0

Reduce By 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Time to Reduce 0 0 0 0 0 0 0 0

Min Gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 3.6 Example of coordination settings and patterns.
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Figure 3.7 Example of coordination day plans.

Figure 3.8 Dual-ring signal control scheme.
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RA crash-generating scenarios have the most possible
conflict pairs, their real occurrence possibility is relatively
low because all the conflicting scenarios are prohibited
by signal controls. According to crash records, such
crashes happen only when drivers violate the traffic rules
or during the signal switching periods.

3.2.2 Empirical Setting

The selection of sample signalized intersections was
limited to data availability, which was mostly affected
by the detector data for the hourly traffic volume and
the signal setting data, depending on whether the
targeted intersections were connected to the INDOT
traffic signal database. While the research team received
the raw detector data for approximately 300 intersec-
tions in the year 2018, only 130 of them contained

complete detector feature tables that included informa-
tion about the detectors’ locations and settings. Out of
the 130 intersections, the research team obtained 115
intersections’ signal settings with the help of the
Indianapolis Traffic Management Center. Figure 3.10
shows the spatial distribution of the 115 selected
signalized intersections. These intersections are distrib-
uted across the entire state of Indiana and some of them
are in the same corridor, which enabled the analysis of
the coordination effects on safety.

One major challenge for disaggregated level analysis
was the highly imbalanced crash and non-crash ratios
(i.e., there were far more hours without crashes than
hours with crashes). There were 1,001 crashes (SD: 783;
OD: 146; RA: 72) identified on the analyzed 115
intersections during the year 2018, but there were
(115*365*24 – 1,001) 5 1,006,399 non-crash hours.



Figure 3.9 Typical crash generating scenarios.

Figure 3.10 Spatial distribution of sample signalized intersections used for analysis.
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Such a skewed crash and non-crash ratio prohibited
normal estimation of the safety effects. To overcome
this problem, a fixed crash and non-crash ratio (1:30)
was adopted when sampling the non-crash hours, and
correction of the estimated intercept was performed
when the real crash probability was calculated.

3.3 Results and Discussion

As discussed in the analysis methods, three types of
crashes were modeled separately using sequential logit
models. Both time-dependent and fixed factors were
identified as significantly influencing the probability
and severity of crashes. Considering the differences
among the three types of crashes, their safety effects are
presented separately. Although there were over 100
variables tested for each model during the modeling
process, few of them turned out to be statistically
significant. The discussion of the models below focuses
on the significant variables.

3.3.1 Safety Effects on Same Direction Collision

Table 3.2 and Table 3.3 show the estimates, standard
error, z.value, and p.value of the same direction crash
probability model and conditional probability model.
The highly significant variables are shown in bold text
in the tables, and some of the merely significant
variables with p.values lower than 0.15 are discussed.
There was one fixed data source (the geometry settings),
and four time-dependent data sources (weather condi-
tions, traffic volume, segment speed features, and signal
settings) were expected to affect the hourly crash
probability and severity. The discussion of the models
will follow these five data sources.

3.3.1.1 Weather conditions. The variable LightRain,
which was defined as hourly precipitation greater than
0 but lower than 2.5 mm, was found to increase the
hourly probability of SD crashes (mostly rear-end
crashes), which is intuitive since light precipitation can
make the pavement slippery and drivers may not be
aware of the risk. Although the research team
attempted to include temperature-related features
(cold weather, ice condition) and other precipitation
characteristics (heavy rain, accumulated rain) in the
model, they were not found to be significant, nor did
they outperform LightRain. This result may have been
due to light rain conditions being the most common
situation and more significant weather conditions are
too rare to become significant.

3.3.1.2 Volume-related variables. There were three
volume-related variables, logVol, LTVolRate, and
logVolSide, in the probability model and one volume-
related variable, Vol, in the conditional severity model,
which turned out to be significant. Vol was the sqrt of
the product between the through and left turn volumes
on the approaching segment to the intersection; logVol

TABLE 3.3
Parameter estimates of the conditional probability of same-
direction severe crash model

Variable Estimate std.error z.value p.value

Intercept -1.366 0.272 -5.018 0.000

Vol -0.003 0.001 -3.063 0.002

SpStd 0.076 0.038 2.000 0.045

Curved 0.639 0.424 1.505 0.132

RushHour -0.390 0.254 -1.535 0.125

Note: Estimates of the significant variables are bolded.

TABLE 3.2
Parameter estimates of the hourly probability of same-direction crash model

Variable Estimate std.error z.value p.value

Intercept -15.213 0.527 -28.883 0.000

LightRain 0.342 0.127 2.706 0.007

logVol 0.634 0.071 8.919 0.000

LTVolRate (0.2-0.8) -0.685 0.226 -3.033 0.002

LTVolRate (0-0.2) -0.047 0.215 -0.221 0.825

logVolSide 0.785 0.062 12.685 0.000

SpStd 0.027 0.015 1.821 0.069

LargeCycle 1.038 0.179 5.812 0.000

Coordination (No) 0.393 0.176 2.238 0.025

Coordination (Free) 0.017 0.095 0.173 0.863

Coordination (EarlyArr) -1.104 0.469 -2.353 0.019

Coordination (LateArr) 0.229 0.266 0.859 0.390

GreTimeSplit 5.740 0.347 16.520 0.000

LaneNum(2) 1.320 0.165 7.979 0.000

LaneNum(3) 1.654 0.157 10.528 0.000

LaneNum(4) 1.699 0.187 9.086 0.000

ExcluRightTurn -0.224 0.110 -2.046 0.041

Curved 0.789 0.194 4.079 0.000

Note: Estimates of the significant variables are bolded.
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was the logarithm of Vol; LTVolRate was the rate
between the left turn volume and the through volume
(ranged from 0 to 1); and logVolSide was the logarithm
of the total volume on the side street.

As expected, the hourly traffic volume (logVol) served
as the exposure factor (i.e., the larger the volume, the
higher probability of crashes). Compared to the raw
volume, the logarithm of the volume performed better.
The volume on the side street (logVolSide) also had a
positive effect on crash probability because the side
street volume could have reflected the scale as well as
the traffic intensity of the entire intersection (i.e., the
busier the intersection, the higher probability of the
occurrence of rear-end crashes). The LTVolRate
reflected the intensity of the left turn traffic, according
to the model, compared to segments with large left turn
volumes (LTVolRate $ 0.8). Segments with reasonable
left turn volumes (LTVolRate between 0.2 and 0.8)
were significantly safer, but this effect was not signi-
ficant when there were insignificant left turn volumes
(LTVolRate , 0.2). The effect of the volume (Vol) on
the conditional severity model was negative, which was
expected since the conditional severity model estimated
the probability of severe crashes (fatal and injured)
given the occurrence of a crash. When the traffic
volume was high, the operating speed on the segment
was low, inducing more crashes that were mostly PDO
crashes.

3.3.1.3 Speed features. The variable SpStd, defined as
the standard deviation of the speeds on the segment
across one hour (the speed data were precise to the
minute in the raw speed data), was found to increase
both the probability and the severity of SD crashes.
This speed feature reflects the frequent and significant
changes of speed across minutes, which is a good
indicator of the disturbance of the traffic flow. This
disturbance of traffic flow can induce more crashes that
are also at a higher severity level. Any engineering
countermeasures that could mitigate such disturbances
would bring safety benefits.

It should be noted that to avoid the potential
endogeneity of the speed data (the change of speed is
due to the occurrence of crash), the extracted speed
hour is the exact hour before the crash. For example,
if the crash happened at 8:24 AM, then the extract
speed is from 7:24 AM to 8:24 AM, so it did not
include the time after the crash occurrence. The
variable SpStd reflects the status of the traffic flow
before crashes.

3.3.1.4 Signal settings. There are three significant
signal setting variables in the crash probability model
while there was nothing significant in the conditional
severity model. The two local signal-related variables,
LargeCycle and GreTimeSplit, were both positive while
the coordination related variable, Coordination, varied
across different conditions.

The variable LargeCycle is the dummy variable
reflecting the local signal cycle (sum of minimum green

time) greater than 50 seconds and the variable
GreTimeSplit is the proportion of minimum green time
for the two phases (the left turn and through move-
ments) of the segment. The local signal cycle reflects the
scale and the traffic intensity of the intersection, and the
green time split reflects the traffic demand intensity of
the targeted segment. Both variables are positively
related to the crash probability.

The variable Coordination is a categorical variable
comparing five different coordination scenarios.

1. No: there is no coordination on the targeted segment
(usually the side street case).

2. Free: the coordination is set as the Free mode (usually
the main street during night).

3. EarlyArr: the coordination is on; and according to the
reference travel time and relative offsets between inter-
sections, the traffic fleet of the coordinated upstream
intersection arrives at the targeted intersection slightly
earlier (0–5 seconds) than the start of the green light
(Figure 3.11).

4. LateArr: the coordination is on; and according to the
reference travel time and relative offsets between inter-
sections, the traffic fleet of the coordinated upstream
intersection arrives at the targeted intersection slightly
later (0–5 seconds) than the start of the green light
(Figure 3.12).

5. Reference: the coordination is on, but the reference travel
time and the relative offsets are far from each other
(the absolute value of their difference is larger than
5 seconds).

Note: the reference travel time was obtained as the
ratio between the measured distance between consecu-
tive intersections and the posted speed limits on the
segments.

The relative offsets among intersections are the
major parameters that control the quality of coordina-
tion. Theoretically, in terms of traffic efficiency, if the
relative offset is close to the reference travel time, the
green band will be larger, and more vehicles will take
advantage of the coordinated phase. However, the
safety effects of coordination are not consistent
according to the obtained SD crash probability model.
When there is coordination (on the main street),
compared to the reference (the not well coordinated
case), EarlyArr is significantly safer while there is no
significant difference for the other two cases (LateArr
and Free). This could be explained by the clearance of
the coordinated fleet. The SD crashes, mostly rear-end
crashes, are prone to happen when traffic lights turn
yellow, and drivers experience the yellow light dilemma.
During their hesitation, they may be hit by vehicles
from the rear. However, for the coordinated traffic
fleet, if all the vehicles from the upstream intersection
pass the targeted intersection before the end of green,
such yellow light dilemma situations tend to be less
frequent, which is exactly what happens for the
EarlyArr scenario. On the other hand, the effect of
Coordination(No) also is possible, indicating that under
the same other conditions (e.g., volume), side streets
without coordination are significantly more dangerous,
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Figure 3.11 Coordination (westbound: early arrival example).

Figure 3.12 Coordination (eastbound: late arrival example).
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which proves the safety effects of coordination in
reducing SD crashes.

3.3.1.5 Geometry settings. Several geometry settings
(LaneNum, ExcluRightTurn, and Curved) were

identified as significantly affecting the SD crash
probability and severity. LaneNum is the number of
lanes for the through and right turn traffic, which
ranged from 1 to 4 in the sample data. The one lane
cases are used as references. Compared to one lane



cases, more lanes introduce higher SD crash
probability, but the effects of LaneNum(3) and
LaneNum(4) are very close. More lanes indicate more
lane change possibilities, and thus more sideswipe
crashes; therefore, even the volume factor was
included in the model as the effects of the number of
lanes are still significant.

The variable ExcluRightTurn is a dummy variable
reflecting whether or not there is an exclusive right
turn lane or turning bay. A negative sign of its estimate
indicates this geometry setting could reduce crash
probability. The existence of an exclusive right turn
lane can direct the right turn traffic earlier and thus
reduce the possibility of lane changing collisions.

The variable Curved is a dummy variable indicating
whether the approaching segment to the intersection is
curved. This variable turned out to be positively related
to both crash probabilities (highly significant) and
severity (merely significant). When a segment is curved,
the sight distance can be affected, making it more
difficult for drivers to change lanes and thereby indu-
cing more SD collisions.

3.3.2 Safety Effects on Opposite Direction Collision

Table 3.4 shows the estimation results of the hourly
probability of OD crashes and Table 3.5 shows the
estimation results of the conditional probability of OD
severe crashes. Since some of the variables in the OD
crash models are discussed in the previous crash
models, the discussion for those variables will be brief.

It should be noted that out of the 146 OD crashes,
there were only four crashes involving through move-
ments from opposite directions, while the remaining
crashes were through movement collisions with OD left
turn movements. To simplify the problem, when there
were two through movements involved, the one with
the lower hourly traffic volume was treated as the left
turn movement.

3.3.1.6 Weather conditions. The variable LightRain
was found to significantly increase the probability of

TABLE 3.4
Parameter estimates of the hourly probability of OD crash model

Variable Estimate std.error z.value p.value

Intercept -9.740 0.847 -11.501 0.000

LightRain 0.530 0.262 2.024 0.043

logVol 0.380 0.132 2.884 0.004

HighImbal -0.805 0.410 -1.963 0.050

logVolSide 0.373 0.107 3.499 0.000

SpStd 0.109 0.033 3.335 0.001

LaneNumber (3,4) 0.908 0.254 3.582 0.000

FlashYellow 1.463 0.197 7.431 0.000

LeftGreSplit 3.833 1.140 3.363 0.001

SmallCycle 0.841 0.399 2.106 0.035

Curved 0.517 0.232 2.226 0.026

Note: Estimates of the significant variables are bolded.

TABLE 3.5
Parameter estimates of the conditional probability of OD severe
crash model

Variable Estimate std.error z.value p.value

Intercept -2.961 1.716 -1.726 0.084

LTVolRate(0–0.2) -3.046 0.899 -3.389 0.001

VolSide -0.001 0.001 -2.159 0.031

Speed 0.119 0.036 3.287 0.001

LargeCycle -2.865 0.996 -2.876 0.004

LaneNumber (2, 3, 4) 2.235 1.188 1.881 0.060

Note: Estimates of the significant variables are bolded.

OD crashes, which was expected since precipitation
makes roadways slippery and impedes vehicle control.

3.3.1.7 Volume-related variables. In the crash
probability model, logVol and logVolSide were found
to increase crash risk as expected. The interpretations
of these two variables were similar to those in SD crash
models, but the variable logVol was defined as the
logarithm of sqrt (Through Volume * Left Turn
Volume), which reflects in general the intensity of
both traffic movements involved. The variable High-
Imbal is a binary indicator of whether the through
movement’s volume is 40 times greater than the OD left
turn volume. A negative sign implies that when there is
very little left turn volume in the opposite direction, the
crash probability is much smaller.

In the conditional crash severity model,
LTVolRate(0–0.2) and VolSide were found to reduce
the probability of severe crashes where the variable
LTVolRate(0–0.2) represents the cases when the ratio
between the left turn volume and the opposite direction
through volume is between 0 and 2. These two variables
are difficult to interpret.

3.3.1.8 Speed features. In the hourly crash
probability model, the SpStd variable was found to
be positively related to crash risk, which is consistent
with the findings in the SD models. In the conditional
crash severity model, the variable Speed, which
represent the average operating speed on the segment,
was found to increase the crash severity level, which is
intuitive since the severity of the collisions are mainly
dependent on the kinetic energy when they conflict with
each other.

3.3.1.9 Signal settings. There are two significant
signal settings, LeftGreSplit and SmallCycle in the OD
crash probability model and one variable LargeCycle in
the conditional crash severity model. The variable
LeftGreSplit reflects the proportion of the minimum
green time for the involved left turn movements. The
larger this proportion is, the larger the left turn traffic
demand and therefore a higher probability of crashes.
The two binary indicators of signal cycle length were
difficult to interpret.
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3.3.1.10 Geometry settings. In the hourly crash
probability model, the LaneNumb(3,4) indicating the
3-lane and 4-lane cases, was found to increase the
probability of OD crashes, which is intuitive. The more
lanes on the through movement, the more through
vehicle fleets and left-turn vehicles that will need to
cross. The number of lanes on the through movement
also may increase the crash severity as the variable
LaneNumb(2,3,4) is positive and significant.

The other geometry-related settings that increase OD
crash probability include FlashYellow, indicator of the
existence of a flashing yellow yield sign, and Curved.
The OD crash probability for the latter one was
intuitive while the former one, FlashYellow, was
contrary to expectations. One explanation is that
flashing yellow yield signs are usually set at intersec-
tions where there are many left turn traffic demands,
thus causing an endogeneity problem. The effect of
FlashYellow does not reflect its safety benefit but rather
the excessive left turn demands at such locations.

3.3.3 Safety Effects on Right-Angle Collision

Table 3.6 shows the estimation results of the hourly
probability of RA crashes and Table 3.7 shows the
estimation results of the conditional probability of RA
severe crashes. Compared to SD and OD crashes, there
were fewer RA crashes and therefore less significant
safety effects were identified.

Like the previous two models, the variable that
served as the exposure factor, logVol, also was highly
significant and positively related to the probability of
RA crashes. The other significant variable in the crash
probability model was SpeedMain (the average speed
on the main street), which reduced the RA crash pro-
bability. This could be explained in the way that higher
speeds on the main street are an indication of less traffic
on the side street. The variable ExcluRightTurn was
found to improve safety, although it was found to be
merely significant. The variable Cycle was found to be
negatively related to RA crash probability.

In the conditional crash severity model, two geometry
settings, HighSkew and FlashYellow were found to
significantly affect RA crash severity. When the inter-
section was highly skewed (greater than 60 degrees), the
crash tended to be more severe; when there were flash-
ing yellow yield signs, the crashes tended to be less severe.

TABLE 3.6
Parameter estimates of the hourly probability of right-angle crash
model

Variable Estimate std.error z.value p.Value

Intercept -4.532 1.090 -4.157 0.000

logVol 0.558 0.157 3.564 0.000

SpeedMain -0.048 0.016 -3.054 0.002

ExcluRightTurn -0.385 0.285 -1.350 0.177

Cycle -0.007 0.003 -1.890 0.059

Note: Estimates of the significant variables are bolded.

TABLE 3.7
Parameter estimates of the conditional probability of right-angle
severe crash model

Variable Estimate std.error z.value p.value

Intercept -0.988 0.406 -2.435 0.015

HighSkew 1.179 0.563 2.093 0.036

FlashYellow -1.206 0.713 -1.691 0.091

Note: Estimates of the significant variables are bolded.

3.3.4 Risk-Based SMS Application-Risk Profile

Although the implementation of the signalized
intersection crash risk models is not feasible now due
to limited data, the in-sample simulations did provide
insight to the potential future implementation of the
research results. There can be two major applications of
the obtained risk-based safety models: (1) estimation of
the time-dependent changes of crash risk over time; and
(2) simulation of the potential safety benefits when
certain countermeasures take place.

3.3.4.1 Risk profile. The major outcomes of the first
application were sets of risk profiles. For each typical
four-leg intersection, there are four approaching seg-
ments to the intersection, and therefore four different
time-sensitive SD crash risk profiles. Similarly, the OD
crash risk model estimated the probability of crashes
between a given direction and the OD left turn traffic.
There also were four separate crash risk profiles. The
RA crash risk model estimated the crash probability
between a given direction and any cross-street traffic;
but to make the outputs consistent and avoid double
counting of crash risks, ‘‘Direction-RA Crash’’ was
defined as the crash risk between the direction’s traffic
and its clockwise directions’ traffic. For example, the
‘‘E-RA Crash’’ is the crash risk between the eastbound
traffic and the southbound traffic. The total probability
of crash at a certain intersection should be the sum
of all 12 crash probabilities (3 types of crashes * 4
directions).

Figure 3.13, Figure 3.14, and Figure 3.15 show
examples of SD, OD, and RA crash risk changes across
a 1-week period. The sample intersection is US 36 at
Dan Jones Rd where the main street is east-west US 36.
The sample period was June 1–7 (Friday through
Thursday) in 2018. The obtained crash risks followed
the general changing trends of the traffic volume. For
the weekdays, the crash risks were higher; and for one
day, the evening peak hours were more dangerous. In
this example, the probability of SD and OD crashes
were higher for the eastbound and westbound direc-
tions, which was where the main street of the case study
area is located.

Figure 3.16 shows the crash risk (three types) profile
across the 1-week period. SD crashes were the major
source of crash risk, which was consistent with the real
distributions of these three types of crashes. While SD
crashes had the lowest probability of severe crashes
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Figure 3.13 Same direction crash risk profile at intersection US 36 at Dan Jones Rd (example days).

Figure 3.14 OD crash risk profile at intersection US 36 at Dan Jones Rd (example days).

Figure 3.15 Right angle crash risk profile at intersection US 36 at Dan Jones Rd (example 7 days).
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Figure 3.16 Crash risk profiles at intersection (US 36 at Dan Jones Rd) from June 1st to June 7th, 2018.

Figure 3.17 Decomposed same direction PDO/injury crash risk profile for Eastbound segment at intersection US 36 at Dan Jones
Rd.

Figure 3.18 Predicted crash risk and observed crashes at intersection (US 36 at Dan Jones Rd) in June 2018.
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(13.8%) compared to OD (37.0%) and RA (29.2%)
crashes, they were more prevalent. The sample applica-
tion of the conditional severe crash model is shown in
Figure 3.17, where the eastbound SD PDO and severe
crash risk profiles are compared.

Figure 3.18 shows the predicted total crash risk
profile across the entire month of June 2018 aligned
with the observed real occurrence of crashes at the
sample intersection. The three crashes occurred around
the predicted high crash risk periods, but the risk profile
did not give obvious indication before a crash occurred
(i.e., it is difficult to ‘‘predict’’ real crash occurrence).
What the model provides is a prediction of the high-risk
time periods.

3.3.4.2 Countermeasure example. The other potential
application of the risk-based safety model is a simu-
lation of the changes in safety performance based on
the time-dependent factors. There are several significant
time-dependent variables in the obtained models, but
few of them can be controlled by traffic engineers. One
of these variables is the offsets between coordinated
intersections. It was identified in the SD crash pro-
bability model that when a traffic fleet arrived at the
downstream intersection slightly earlier than the rela-
tive offset, the safety performance of that approaching
segment improved. The offset effect is illustrated below
with three coordinated sample intersections on US 36.
Figure 3.19 shows the locations of the three targeted
intersections and Table 3.8 shows their original coordi-
nation settings. The three intersections are consecutive
signalized intersections across the main street US 36,

and they share the same coordination cycle of 120
seconds. However, there are three different offsets and
green time split plans depending on the weekdays or
weekends. The original offset settings did not fulfill the
safest case of ‘‘EarlyArr’’ on either direction (eastbound
or westbound).

Since traffic engineers were not aware of the diffe-
rence in safety performance for different offset settings,
the original offset settings were probably set solely
based on traffic efficiency considerations. However,
based on this study, there are several candidate coordi-
nation plans that could maintain similar high efficiency
as well as good safety performance. In the example
below, we simulated the potential changes of crash risks
if all the coordinated hours (06:00–22:00) could fulfill
the EarlyArr conditions for the westbound traffic. The
westbound traffic was selected because it had the largest
volume and there was no way to fulfill the EarlyArr
conditions for both directions (the sum of the relative
offsets between two intersections should always equal
the cycle length).

The simulation results for the two westbound
approaching segments (from Avon Marketplace to Dan
Jones Rd and from Dan Jones Rd to Beechwood Dr) are
shown in Figure 3.20 and Figure 3.21. Compared to the
original coordination offset settings, if the offsets could
be optimized during all the coordinated hours, the
corresponding SD crash risk could drop significantly.
Considering that most of the crashes are SD crashes and
that the westbound segment is on the main street with the
largest volume, the safety improvement at the intersection
level could be considerable.

Figure 3.19 Intersection locations (example of three coordinated intersections on US 36).
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TABLE 3.8
Original coordination settings (example of three coordinated intersections on US 36)

Main Street US 36

Side Street Beechwood Dr Dan Jones Rd Avon Marketplace

Coordination Cycle

Offset1

Offset2

Offset3

Eastbound Relative Offset1

Eastbound Relative Offset2

Eastbound Relative Offset3

Westbound Relative Offset1

Westbound Relative Offset2

Westbound Relative Offset3

Eastbound Reference Travel Time

Westbound Reference Travel Time

Offset1 Take Effect Time

Offset2 Take Effect Time

Offset3 Take Effect Time

27

53

88

–

–

–

88

69

74

–

25

120 seconds

59

104

14

32

51

46

48

44

46

25

50

Weekday 06:00–9:00; Weekend 06:00–8:00

Weekday 9:00–14:00, 19:00–22:00

Weekend 8:00–14:00, 19:00–22:00

Weekday 14:00–19:00; Weekend 14:00–9:00

11

60

88

72

76

74

–

–

–

50

–

Figure 3.20 Simulation results for westbound segment at US 36 at Dan Jones Rd.

Figure 3.21 Simulation results for westbound segment at US 36 at Beechwood Dr.
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4. IMPLEMENTATION

The implementation of the proposed risk-based safety
management framework includes three components.

1. Enquiring and accessing data sources. There are several
data sources outside INDOT’s safety management system
database, such as hourly weather conditions, INRIX speed
data, and, for signalized intersections, detector/phase data

maintained by the Traffic Management Center.

2. Processing data. The raw data should be pre-processed

including formatting, filtering, and imputing, and then
processed with risk models to estimate the risk (prob-
ability of crash and severe crash).

3. Applying the processed data in the current SMS supple-

mented with risk-based elements.

a. The crash-based SMS tool, SNIP, provides candidate
road segments and intersections.

b. The risk-based SMS identifies conditions that cause
temporarily elevated crash risk. These conditions may

be used as triggers of the operational intervention.

c. The provided prototype risk-based tool estimates the

number of crashes on roads in periods with potential
operational interventions; no interventions applied yet.

d. The crash-based SMS tool, RoadHAT, is used to

perform a benefit/cost analysis of the considered
operational countermeasures.

4.1 Prototype Tool for Risk-Based Safety Management

A risk-based SMS application was created to identify
risk-contributing factors (Figure 4.1). This tool allows
the user to select road segments and evaluate the crash
risk over a user-selected period. The program calculates
and displays the hourly crash risk for the selected

segments during a user-specified period. One of its
critical components for analysis is a ranking of the risk-
contributing factors. The user can filter the selection
period to investigate further the effect of different
factors on the crash risk. This allows the user to propose
safety interventions that might not be revealed using the
traditional approach because some effects might be
diluted when using long aggregation periods. The
introduction and detailed step-by-step implementation
of the risk-based SMS prototype program are included
in Appendix B. Risk-Based SMS Application RMT.

The current SMS identifies HCLs. The next step
involves identifying high-risk conditions that can be
affected with a target safety countermeasure. One year
of hourly data on selected rural freeways was acquired,
processed, and analyzed. Then, the crash risk is
estimated using Equation 2.5 through Equation 2.7.
High-risk conditions are assumed to happen at the 50th
percentile, which may be adjusted by the end user based
on their criteria and experience. Another criterion to
filter data for analysis is high-speed conditions. The
50th percentile of average travel speed is used here as
well. The summary statistics of the 2018 sample are
presented in Table 4.1.

4.2 Input Data Handling

Data on fixed and time-dependent risk factors are
essential for using the proposed risk-based SMS tool.
The different data required can be classified into three
types: (1) data that are available in-house at INDOT; (2)
data that are available to INDOT through Purdue CRS;
and (3) data not currently available that must be collected

Figure 4.1 Screenshot of prototype risk-based SMS tool.
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before using the tool. Table 4.2 presents a classification of
the specific data sources in these three cases. Crash
records are available in-house to INDOT via the ARIES
data set. CRS has developed various analytical tools (e.g.,
CLIP) to refine and assign individual crashes to target
road sites. Operating speeds are available in-house and
via Purdue CRS, depending on the data set name.
NPMRDS is available in-house while INRIX speed data
are available to Purdue CRS. Data preparation programs
in SAS and R have been developed to use these two data
sources. Traffic counts are available in-house to INDOT.
Road characteristics are partially available to INDOT in-
house. Additional variables may require manual data
collection by the end user via online repositories such as
Google Earth. Weather conditions can be accessed via
the INClimate group and NOAA’s online data query
tools. Purdue CRS has developed additional programs to
prepare large amounts of weather data for statistical
analysis of traffic safety.

4.3 Illustrative Examples

4.3.1 Risk Profiles

The models presented in Table 2.1 and Table 2.2 can
be used to supplement crash-based safety management
by estimating the short-term crash risk performance of

a target road segment. This estimation may improve the
current safety management tasks. Specific applications
are risk-based network screening, operational counter-
measure evaluation, and crash risk visualization tools
for safety audits.

An example visualization tool that may benefit safety
audits is the risk profile. Using historical crash data, the
expected hourly risk and observed crashes can be
plotted against time. Two example risk profiles were
developed and are presented in Figure 4.2 and Figure
4.3. These profiles use data from a section of I-65
northbound in Bartholomew County. The 0.25-mile
segment has an auxiliary entering lane, a wide-ditched
median, a median cable barrier with a relatively small
offset, and a roadside guardrail on the right shoulder.

Figure 4.3 depicts data from January 2014 when
seven crashes occurred. A cyclic baseline risk was
perceived when the crash risk trended (solid blue line).
This base risk was then altered by rapid changes in
travel speeds or weather events. For example, four out
of the seven crashes occurred during adverse weather
conditions, specifically, two on January 2, one on
January 6, and one on January 16. Figure 4.3 presents
the risk profile using data from April 2017 when four
crashes occurred. It is worth mentioning that the fourth
crash was excluded from the analysis as it was a
secondary crash.

Risk profiles and other summary statistics were used
to develop the safety dashboards available in the risk-
based SMS tool. Such dashboards can be a valuable
tool for safety management when preparing safety
audits or evaluating operational countermeasures.
Using the calibrated parameter estimates (e.g., the
downward speed trend or a reduction in the speed limit
and the amount of time a given operational counter-
measure is active), can produce the expected safety
benefit. This estimation then can be compared to the
actual benefit once the real-time data are available.

4.3.2 Countermeasure Evaluation

4.3.2.1 Variable speed limits. This section presents an
example of the risk-based SMS and its tools for
implementing variable speed limits (VSLs) on rural
freeways. Available data sources are presented as well

TABLE 4.1
Distribution of crash risk and travel speed in 2018

Statistic Speed (mph) Hourly Crash Risk (%)

Mean 65.01 0.0089

Std. Deviation 65.58 0.0055

Mode 65.92 0.0023

100% Max 77.17 2.0371

99% 67.67 0.0738

95% 66.92 0.0170

90% 66.58 0.0124

75% Q3 66.08 0.0083

50% Median 65.58 0.0055

25% Q1 64.83 0.0036

10% 63.67 0.0025

5% 61.25 0.0021

1% 54.75 0.0014

TABLE 4.2
Accessibility of input data for prototype risk-based SMS tool

Input Data Type Source Accessibility

Crash Records Automated Reporting Information Exchange System-(ARIES) In-house, Purdue CRS

Operating Speeds National Performance Management Research Data Set (NPMRDS);

INRIX Inc

In-house, Purdue CRS

Traffic Counts Traffic Count Database System (TCDS);

High-Resolution Detector Data (HRDD)

In-house

Road Characteristics Road Network Data (RND);

Google Earth Imagery

In-house, Collect

Weather Conditions Indiana State Climate Office (INCLimate);

National Oceanic and Atmospheric Administration (NOAA)

Purdue CRS
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Figure 4.2 Crash risk profile for I-65 northbound near Exit 76 B in January 2014.

Figure 4.3 Crash risk profile for I-65 northbound near Exit 76 B in April 2017.
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as the components of the prototype application tool
and a sample of high-crash roads with high-risk con-
ditions. Finally, the estimated effectiveness of VSLs is
demonstrated and discussed.

Table 4.3 presents the descriptive statistics of the
crash risk factors under high-risk, high-speed condi-
tions. In addition, the relation to the population mean
(the baseline) is shown. Regarding exposure variables,
the short-term traffic volume and AADT values were
higher than the population under the selected con-
ditions. High-risk, high-speed observations tend to
happen in segments with moderate to sharp curves,
higher proportions of cable median barriers, outside
guardrails, concrete pavements, and ramps. In addition,
such observations present a lower number of overpasses
and median guardrails. Regarding time-dependent
factors, high-risk high-speed observations tend to
happen under light rain conditions with growing
queues. Weekends and daytime are overrepresented
under these conditions.

To evaluate the implementation of VSLs, a subset of
high-risk high-speed conditions was used. This subset
accounts for 18.84% of the 2018 data (878,217
observations). The effectiveness of VSLs on rural
highways was recently evaluated (Avelar et al., 2021;
El Esawey et al., 2022). They produced two CMFs that

match the grouping of injury severity levels used in this
study. A 29% reduction in PDO crashes (CMF 5 0.71)
was reported by Avelar et al. (2021) while a larger
32% reduction in KABC crashes (CMF 5 0.68) was
reported by El Esawey et al. (2022).

Using the subset of short-term risk estimates and the
two high-quality CMFs, the expected number of
crashes before and after the implementation of VSLs
could be accurately estimated. The premise that VSLs
are most effective under high-risk high-speed conditions
is based on existing research on posted speed limits that
suggest their maximum safety effect under non-
congested conditions close to free flow (Tarko et al.,
2019). The expected number of PDO crashes before the
implementation of VSLs was 67.5, and the expected
number of KABC crashes was 7.3. After the imple-
mentation of VSLs, 47.91 PDO and 4.9 KABC crashes
are expected.

In practice, the end user of the risk-based SMS tool
would have to input the data needed to calculate
the hourly risks, select the target risk level, and identify
the conditions for which the target countermeasure
is most effective. The tool estimates the risk reduction
factor for the selected segment by running both
scenarios with and without countermeasures. This
result is used in the current SMS system tools



TABLE 4.3
Descriptive statistics of risk factors under high-risk high-speed observations (N 5 878,217)

Variable Mean Std. Dev. Minimum Maximum Compared to Baseline

Hourly Volume (veh/day) 1.0204 0.4223 0.0150 3.1610 Higher

AADT Passenger Cars (veh/day) 24.6584 6.1124 8.2390 39.6390 Higher

AADT Heavy Trucks (veh/day) 10.7800 2.6585 4.9130 15.5000 Higher

Overpass 0.1010 0.3014 0.0000 1.0000 Lower

Moderate Curve (5.5–13.9 degrees) 0.1234 0.3289 0.0000 1.0000 Higher

Sharp Curve (14.0–28 + degrees) 0.1519 0.3590 0.0000 1.0000 Higher

Cable Median Barrier 0.8856 0.2729 0.0000 1.0000 Higher

Guardrail Median Barrier 0.0336 0.1117 0.0000 1.0000 Lower

Guardrail Roadside Barrier 0.1942 0.3085 0.0000 1.0000 Higher

Offset # 11 ft 0.4838 0.4997 0.0000 1.0000 Higher

Median Hazard 0.1562 0.3756 0.0000 2.0000 Lower

Roadside Hazard 0.2628 0.4575 0.0000 2.0000 Higher

Concrete Pavement 0.1686 0.3512 0.0000 1.0000 Higher

Entering Ramp 0.0360 0.1511 0.0000 1.0000 Higher

Exiting Ramp 0.0291 0.1106 0.0000 0.7584 Higher

Speed Limit 5 65 mph 0.1926 0.3944 0.0000 1.0000 Higher

Outside Shoulder Width (ft) 11.4541 0.7220 9.1250 13.9800 Higher

Light Rain # 0.1 inch/h 0.0840 0.2774 0.0000 1.0000 Higher

Temperature # 32Fu 0.1539 0.3608 0.0000 1.0000 Lower

Icy Conditions 0.0102 0.1007 0.0000 1.0000 Lower

Std. Dev. of Speed 1.2389 0.7006 0.0000 12.2526 Lower

Speed Trend -0.0309 0.1592 -3.2093 2.0074 Lower

Growing Queue 0.3409 0.4740 0.0000 1.0000 Higher

Average Speed (mph) 66.1246 0.4628 65.5833 74.0000 Higher

Friday 0.1777 0.3823 0.0000 1.0000 Higher

Sunday 0.1754 0.3803 0.0000 1.0000 Higher

Morning 0.2893 0.4534 0.0000 1.0000 Higher

Afternoon 0.4343 0.4957 0.0000 1.0000 Higher

Evening 0.2448 0.4299 0.0000 1.0000 Lower

Note: Light rain is defined as precipitation lower than 2.5 mm or 0.098 inch per hour.
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(RoadHAT 4D) to evaluate projects and perform
economic analysis.

4.4 Compatibility with Existing Safety Management
Tools

Since the crash risk assessment interval is small
relative to the accident frequency, it is safe to use the
annual cumulative hourly risk of crash as the expected
number of crashes per year.

This allows the program to make such an estimate
possible with and without a countermeasure and thus
calculate the RMF that can be associated with the
CMF for that countermeasure in the selected segments
taking into account the historical weather patterns in
that particular region.

The resulting risk reduction factor can be used in the
RoadHAT 4D Economic Evaluation Form 5 module as
one of the countermeasures to be evaluated by copying
the CMF.

4.5 Pedestrian Safety Management

Pedestrians are the most vulnerable road users as
they tend to endure more severe injuries in any collision
with a vehicle. While innovative safety countermeasures

promise improved pedestrian safety, a careful analysis
of local conditions is required before selecting proper
corrective measures.

JTRP Project SPR-4437 (Ahmad et al., 2021)
focused on first developing a methodology to identify
roads and areas in Indiana where the frequency and
severity of pedestrian collisions were higher than the
acceptable level and then selecting effective counter-
measures to mitigate or eliminate the safety-critical
conditions. As part of SPR-4437, and particularly
relevant to the risk-based SMS framework, two sets
of models were developed to facilitate their road-
focused analysis: (1) pedestrian crossing activity level
models to fill the gap in pedestrian traffic data, and (2)
crash probability and severity models to estimate the
risk of pedestrian crashes around urban intersections in
Indiana.

4.6 Implementation Roadmap

The primary benefits of this study are an assessment
of the feasible means to implement a crash risk-based
approach to the selection and implementation of
infrastructure improvements and possible operational
safety improvement actions using data collected over a
much shorter time frame than is currently possible.



These factors can potentially reveal static and time-
varying conditions that alter crash risk. To make the
components of the new risk-based SMS applicable to
the current Indiana safety management programs, three
actions must happen.

1. Incorporate the risk-based SMS data sets into INDOT’s
Information Technology practice, including their storage,
renewal, and management.

2. Develop data preparation components to produce the
inputs required by the safety management tools and make
them available to the end users.

3. Modify the existing road screening, safety projects
scoping, and cost-effectiveness evaluation tools to bring
new input into the decision-making process for safety
infrastructure.

Fundamental knowledge that supports these three
actions is presented in this report. There are two
possible avenues for implementing the results. First, the
current recurring service arrangement with the project
owner if the implementation effort turns out to be
limited. Second, a new project with a stated implemen-
tation scope and budget needs to be approved within
the JTRP process. This project may be a follow-up
effort or may partially overlap with the project pro-
posed here to speed up the implementation.

5. CLOSURE

5.1 Summary of Findings

This study is the first comprehensive research
attempt to analyze the disaggregated crash risk on
rural freeway segments and signalized intersections. All
the time-dependent potential crash-risk factors (hourly
traffic, speed features, weather conditions, and signal
controls) were tested in several sequential logit models
that can estimate both the probability of crash and the
conditional probability of severe crash.

For rural freeway segments, the hourly crash risk
was found to increase depending on the hourly volume,
AADT by vehicle type, horizontal curves, barriers,
lower speed limits, the standard deviation of speed, the
interaction of low-intensity rain and freezing tempera-
tures, auxiliary lanes, downtrend speeds, and conges-
tion. On the other hand, overpassing roads, average
speed, and uptrend speed were found to enhance safety.
The conditional probability of a severe outcome was
increased by mild curves, the average speed, the
standard deviation of speed, downtrend speeds, and
intermediate congestion while lighting and lower speed
limits were found to reduce crash severity.

For signalized intersections, crashes were divided
into three types: same-direction (SD), opposite-direc-
tion (OD), and right-angle (RA) crashes based on
different crash generating scenarios. The significant
variables were diverse across the three models; but in
general, light rain, the logarithm of the square root of
the involved traffic volume product, and the standard
deviation of speed at the involved intersection leg were
found to increase crash risk. Coordination settings were

found to affect SD crash probability. Other factors
including curved intersection legs, the number of lanes,
and exclusive right turn lanes were found to be
significant but had diverse effects across the different
crash types.

The obtained hourly probability models were used to
generate crash risk profiles which display and compare
the changes of crash risk over time and to estimate
the potential safety benefits if certain time-dependent
countermeasures, such as variable speed limits, take
effect.

5.2 Implications for Safety Management Practice

The concept of risk-based safety management and its
tools have the potential to supplement the existing
crash-based safety management practice. Thus, the
development of risk-based SMS will not replace the
current crash-based SMS but instead will supplement it
with features not covered by the existing SMS. No
disruption, but rather gradual expansion of the existing
system, is envisioned.

On the one hand, disaggregated safety analysis can
estimate the short-term variation of crash risk on a
specific road segment. The estimated impacts, including
static and time-varying factors, can be used to quantify
changes in the crash risk caused by the implemented
safety countermeasures. On the other hand, the role of
count-based crash models remains. Once an HCL road
is identified as requiring additional safety analysis and
potential intervention, the existing count-based tools,
such as safety performance functions, can be used.

Further analysis of risk estimated in short intervals
would allow the identification of periods with high-risk
conditions and the presence of specific risk factors.
Such an approach is expected to help obtain robust
estimates of the actual effect of safety countermeasures,
particularly those with an operational component (e.g.,
variable message signs, variable speed limits, in-vehicle
messages, and other active traffic control devices). The
proposed approach to estimating both the crash risk
and the effects of safety countermeasures in short
intervals supplemented with long-term safety analysis
offers a more comprehensive approach than the one
offered solely by crash count analysis.

5.3 Future Research Directions and Systemwide
Implementation Suggestions

The future research of time-dependent safety man-
agement mainly will depend on the availability of new
data as well as emerging data sources. For the given
data, the research team exploited the statistical tools to
investigate and establish the relationship between risk
factors and crashes. If more data become available (for
example, if more years of detector data becomes
available), which is expected since INDOT is connect-
ing the data from increasingly more signalized inter-
sections to the Traffic Center database), there might be
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more significant time-dependent factors for signalized
intersections models since the crash samples for OD
crashes (146) and RA crashes (72) are still very limited.

The other potential research direction is an analysis
of the disaggregated crash risk using black-box machine
learning methods, which could provide the ability to
make better predictions possible but could lessen the
interpretability of the model. The machine learning
approach will not be able to produce safety improve-
ment suggestions for engineers since all the input
variables are masked in the neural network, but it
could help identify high-risk time periods. The high-risk
time periods also may have similar operational condi-
tions that could be classified.

The risk-based safety management system presented
here is a data demanding safety analysis tool that
considers crash risk decomposed at the hourly level
with various sources of time-dependent risky factors.
The primary challenge of the systemwide implementa-
tion of such an analysis tool is data management, which
requires two steps: (1) safe and timely connection
between time-dependent risk factors and INDOT safety
management system, and (2) automatic preprocessing
of the data. In this current study, these two steps were
accomplished by the research team with the sample
data, but if INDOT desires a systemwide application of
the analysis framework, agency-wide professional
database management and maintenance efforts will be
required.
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APPENDIX  A.  TRAFFIC  VOLUME  PREDICTION  MODEL  

High-resolution data for traffic exposure is critical for the successful assessment of road safety. 
Tarko et al. (2021) found that hourly traffic volumes are critical to crash risk prediction. Other 
time-dependent crash risk factors include weather, operating speed, and seasonal variations. 
Although state highway agencies, including INDOT, routinely count traffic with permanent and 
coverage detector stations, only a small percentage of the road segments in the total road network 
are covered. 

One solution is to input the missing data with predictive models. To address this need, this section 
describes an effort to evaluate the possibility of predicting hourly traffic volumes for different 
classes of road segments in Indiana using a practical method based on statistical regression 
enhanced with a simplified representation of traffic generation and routing through a road network. 
A regression model for hourly traffic volumes was developed. Among the significant predictors 
found in the model, there are temporal effects (time of day, day of week, season), road functional 
classification, land development that potentially feeds a road segment with traffic (travel 
propensity), and a route selection element (travel time excess index). The estimation results 
indicate that all the listed variables significantly affected the traffic volumes on the considered 
road segments. The proposed model provides a reasonable estimation of hourly traffic volumes 
where the system currently does not provide any data. Possible further improvements of the model 
are also discussed. Hourly traffic predictions can help highway agencies with system-wide analysis 
including safety management and traffic operations. 

A.1  Past  Research 

Traffic exposure is the primary cash risk factor on any target road location. Martin (2002) reported 
a direct relationship between crash rates and severity and hourly traffic volumes on interurban 
roadways on different days of the week. On another note, Lingras et al. (2000) performed traffic 
volume time-series analysis based on different types of road use which should help travelers plan 
their trips efficiently, which in turn, should maximize the use of highway capacity. Capparuccini 
et al. (2008) found that design hourly volume estimates were less accurate for roads with greater 
variability in volume fluctuation, but the selection of one method of analysis over another for 
particular traffic pattern groups resulted in smaller error. Furthermore, Zahedian et al. (2020) 
incorporated permanent counts as a direct input to the model, thus accounting for spatiotemporal 
correlations between hourly link volumes. 

A wide range of dynamic traffic assignment models exist that aim to update the matrix using time-
varying traffic counts. In recent years, advancements in machine learning-based methods, as well 
as the availability of large-scale data sets, such as probe vehicle data, have provided the 
opportunity to approach the link flow estimation problem from different perspectives. Sekuła et 
al. (2018) introduced an ANN-based regression approach that estimates hourly traffic volume 
using multiple data sources, such as vehicle probe counts and speeds, weather stations, and road 
characteristics. Recently, Yi et al. (2021) used data-driven machine learning and graph theory to 
infer hourly traffic volumes including the effect of spatial dependency among different locations. 
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The traditional method for link flow estimations is formed on traffic assignment techniques. These 
techniques aim to compute link flows based on the O-D matrix and equilibrium assumptions 
(Cascetta, 2009). 

A.2  Methodology 

The proposed prediction of hourly traffic volumes is based on the trip characteristics, network 
connectivity, land use, and temporal effects applicable to safety management at the level of a single 
road element and one hour. The research scope was limited to selected classes of urban road 
segments. A log-normal regression model (Equation A.1) was selected for two reasons: (1) to 
avoid negative estimates of traffic volumes, and (2) to address the heteroscedasticity typically 
found in count observations. Furthermore, the model with the dependent variable in its observed 
form is connected with the other variables via a multiplicative form that was found appropriate for 
many count data models. An observation in this model applies to a road segment between 
intersections. 

𝑉𝑉ℎ, 𝑘𝑘 = exp (𝛽𝛽0 + 𝛽𝛽𝜏𝜏𝑃𝑃{𝑙𝑙𝑙𝑙 (𝛴𝛴{𝜏𝜏}𝑃𝑃𝑘𝑘 )} + ∑𝛽𝛽𝜏𝜏,𝑖𝑖𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑘𝑘 ) Equation A.1 

where: Vh,k = hourly traffic volume along segment k, εk = error term, β’s are the model estimates 
and Pk = weighted propensity of segment k. The proposed regression-based approach introduces 
two new variables for roadway segments: travel propensity and travel time excess index, which 
reflect trip motivation and the routing elements omitted in the existing regression models. These 
variables consider the link connectivity, route choice and land use characteristics of the origins 
and destinations. An O-D matrix with a static traffic condition is considered for understanding 
work-related trip patterns among traffic analysis zones (TAZ), and consequently, computation of 
the travel propensity and travel time excess index of the segments of interest. 

Figure A.1 Network routing via subject segment, k. 
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Typically, commuters prefer closely connected road segments that can be used to reach a wide 
range of destinations within a reasonable travel time range. Such characteristics of the segment 
should significantly affect the traffic volumes on that particular segment. In this study, the travel 
propensity of a road segment represents the potential traffic using a segment to travel between two 
groups of sub-TAZs distant from each other within a certain maximum travel time (e.g. 40 
minutes). In Figure A.1, the road segment k connects sub-TAZs A and C to sub-TAZs B and D. 
The travel propensity within range 𝜏𝜏 (e.g., 40 minutes) from sub-TAZ 𝑖𝑖 via segment k is expressed 
through the following equation: 

𝑟𝑟𝑖𝑖𝑊𝑊𝑖𝑖,𝜏𝜏,𝑘𝑘 Equation A.2 𝑝𝑝𝑖𝑖,𝜏𝜏,𝑘𝑘 = 
𝑊𝑊𝑖𝑖,𝜏𝜏

where 𝑟𝑟𝑖𝑖 = number of working residents in sub-TAZ i, 𝑊𝑊𝑖𝑖,𝜏𝜏,𝑘𝑘 = number of sub-TAZs reachable 
from sub-TAZ 𝑖𝑖 via directional segment 𝑘𝑘 within travel time range 𝜏𝜏, and 𝑊𝑊𝑖𝑖,𝜏𝜏 = number of sub-
TAZs reachable using the shortest paths within travel time range 𝜏𝜏 from sub-TAZ i. 

On the other hand, commuters prefer routes that offer short travel times. Therefore, a smaller 
number of trips will be made via segment k if the shortest travel time possible via this segment is 
longer than the travel along an alternative shortest path on the road network represented with the 
blue dashed line in Figure A.1. The travel time excess index represents the mitigating effect of a 
longer travel time via segment k than along alternative routes. In Figure A.1, the shortest path 
connecting sub-TAZ A and sub-TAZ B can be compared to the path connecting these two sub-
TAZs through road segment k. The excess travel time is evaluated using this index. This variable 
serves as a proxy for route choice. This link-specific information is critical for the correct 
estimation of traffic volumes. Using the following Equation A.3, the variable can be computed: 

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑠𝑠 Equation A.3 𝛥𝛥 = 
𝑡𝑡𝑠𝑠

where tk = travel time on the near-shortest path (through the segment of interest) and ts = travel 
time on the shortest path along the network. 

Indeed, the application of the expected research outcome is practical in several ways. First, it does 
not involve any traffic count or trip information to compute the traffic predictions. Second, the 
input required for predicting traffic, such as land use and roadway characteristics information are 
easily available. Third, the computation of the two compound inputs explained in the remainder of 
the study (travel propensity and travel time excess index) are relatively simple, intuitive, and 
applicable to all cases. Fourth, traffic safety analysis on a network scale can be accomplished on 
local roads where no traffic volumes are currently available. 

A.3  Data 

A sample of 260 urban road segments with short-term traffic counts was prepared. The sample 
covers mainly lower classified roads (i.e., minor arterials, major collectors, minor collectors and 
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local roads) since past research (Tarko et al., 2021) tackled the prediction of hourly traffic volumes 
on freeways and other major roads on traffic. To exclude the COVID-19 pandemic effect, only 
traffic information from the year 2019 was analyzed. It also should be noted that this sample 
includes observations for all weekdays except Fridays for two reasons: (1) the proposed 
methodology is exclusively based on work-related trips, and (2) sufficient observations for 
weekends and Fridays were not available from INDOT’s traffic count database system. Hourly 
traffic counts for these segments were used as the dependent variable in this model. 

This study considers sub-TAZs as the origin and destination points to understand the work-related 
trip characteristics of commuters. The trip travel times were used to compute travel propensity and 
the travel time excess index for the sample road segments. First, to evaluate the trip travel times 
through the shortest paths along the network, a time-independent O-D Cost Matrix was created 
based on 6,188 sub-TAZs and the Indiana road network data set using ArcGIS Pro 2.8. For the 
purpose of this study, 40 minutes was considered the maximum commute time between sub-TAZ 
pairs acceptable to travelers when they decide their home and workplace locations. Longer travel 
times were assumed negligible and pairs of sub-TAZs with longer times of travel between them 
were not considered in this study. For instance, in A.1 27, the blue dashed line is regarded as the 
shortest path or fastest path along the network for sub-TAZ groups A and B. Furthermore, the 
near-shortest paths in this study refer to the shortest paths connecting pairs of sub-TAZ groups via 
the sample road segments along the road network. A separate but similar network routing 
procedure was carried out for examining these near-shortest paths where any redundant or longer 
than the shortest paths were eliminated. The specific boundary for the near-shortest paths was 
determined by a maximum allowable travel time excess index (i.e., 0.35). Therefore, only those 
near-shortest paths were considered that incurred travel times which were at most 35% of that 
incurred through the shortest paths. 

Finally, the travel time information of the shortest paths and near-shortest paths was utilized in the 
calculation of weighted travel propensity and the mean travel time excess index of sample road 
segments. Summary statistics for each variable are shown in Table A.2. The weighted travel 
propensity was derived by applying a factor, N, to the total propensity value of a road segment 
where N = (1-Δ)/1,000. Moreover, the mean travel time excess index for each segment was 
considered in the final estimation model. In this study, a travel time excess index higher than 0.35 
indicated a “too slow” path and the corresponding travel propensity for that path was not included 
in the calculation of total travel propensity for the segment. It may be a concern that in the 
estimation sample only 3.8% of the urban road segments are minor collectors and only 4% are 
local roads, which might lead to reduced accuracy in the estimated parameters corresponding to 
these variables. This small number of observations is due to the low availability of data by INDOT. 
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Table A.1 Descriptive statistics of sample used in traffic volume prediction 

Variable Mean Std. Dev. Percent Min Max 
Land Development and Routing 
Weighted travel propensity 264.4 99.76 – 4.27 524.57
Log of weighted travel 
propensity 3.86 1.22 – 1.45 6.26
Travel time excess index 0.16 0.04 – 0.06 0.25
Road Class 
Minor Arterial (4) – – 43.4 – – 
Major Collector (5) – – 48.8 – – 
Minor Collector (6) – – 3.80 – – 
Local Roads (7) – – 4.00 – – 
Season 
Fall – – 23.5 – – 
Winter – – 16.4 – – 
Spring – – 33.6 – – 
Summer – – 26.5 – – 
Day of Week 
Monday – – 18.9 – – 
Tuesday – – 45.3 – – 
Wednesday – – 27.4 – – 
Thursday – – 7.80 – – 

A.4  Results 

The modeling results in Table A.2 show the parameter estimates and statistical significance of the 
38 variables considered. All of the significant variables that improved the overall goodness of fit 
were retained in the final model. The average value of the dependent variable hourly traffic volume 
was 146.1 vehicles per hour and its standard deviation was 225.5 vehicles per hour, which 
indicated high variance. The weighted travel propensity was log-transformed before inclusion in 
the model. The R2 value of 0.533 indicates that the log-normal regression model explains more 
than half of the variance in the sample. The adjusted R2 was calculated as 0.530 with the following 
equation: 

𝑁𝑁 − 1 Equation A.4 𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) 
𝑁𝑁 − 𝐾𝐾

where N = the total number of observations and K = the number of parameters in the model. This 
measure adjusts for the number of predictors in the regression model. The constant term of 2.455 
was statistically significant at the 99% confidence level. Under a correct sampling scheme, this 
term accounts for the joint effect of all the unobserved factors. 
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In terms of the specific effects of various factors, many categorical and continuous variables were 
considered. The model parameters are quite intuitive in terms of the general understanding of the 
corresponding traffic effects. For example, minor arterials serve as a reference case and as 
expected, major collectors, minor collectors and local roads tend to have lower hourly traffic 
volumes than the reference road as indicated by the negative parameters associated with these 
types of roads. 

Travel propensity and the travel time excess index, which reflect the excess travel time along a 
segment above the minimum offered via the fastest path, also produced intuitive estimates and 
were found to be highly significant. The propensity of travel on a road segment was found to be 
positively correlated with the hourly traffic volumes on the segment at the statistical level of 99%. 
This finding is consistent with the expectation that a segment that offers a good connection 
between a large number of origin-destination pairs (travel potential) should be used by a larger 
number of travelers than in cases of lower travel potential. A high volume is a tangible 
manifestation of such a statistical connection. Again, the negative estimate of the higher travel 
time excess index refers to lower traffic flows through the links. Therefore, it properly reflects the 
expected discouraging effect of a longer trip on a driver’s selection of a connection via a subject 
segment. The negative regression parameter associated with the travel time excess index confirmed 
this expectation. In addition, several temporal factors, such as time of day, day of week and 
seasonal variations are included in the model. Intuitively, the hour indicator shows a strong 
positive association with high traffic flows during the morning and evening peak hours. In the fall 
season, the traffic volume tended to be the highest followed by winter and then summer. The “back 
to school jump” could be one of the primary reasons why traffic is much higher during the fall. As 
for the days of the week, Mondays generally were the busiest. Moreover, the interaction variables 
include primarily the interaction among log of travel propensity and weekdays. These variables 
adjust the propensity values with regard to days of week variations. While the estimates can be 
challenging to interpret, they provide insights on how land use varies by the day of the week and 
their contributions to hourly traffic volume profile. 
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Table A.2 Parameter estimates of log-normal regression model of hourly traffic volume 

Effect Estimate Std. Error 
Wald χ2

Statistic Pr. > | χ2 | 
Intercept 2.455 0.313 61.72 < 0.001 

Roadway Characteristics 
Minor arterial (4) – reference 
Major collector (5) -0.557 0.024 534.51 <0.001 
Minor collector (6) -1.250 0.093 180.41 <0.001 
Local roads (7) -1.258 0.153 67.43 <0.001 

Trip and Land-Use Characteristics 
Log of weighted travel propensity 0.289 0.016 326.30 <0.001 
Travel time excess index -2.103 0.327 41.45 <0.001 

Temporal Factors 
Hour 0: 0:00–0:59 – reference 
Hour 1: 1:00–1:59 -0.500 0.574 0.76 0.384 
Hour 2: 2:00–2:59 -0.623 0.629 0.98 0.323 
Hour 3: 3:00–3:59 -0.554 0.597 0.86 0.354 
Hour 4: 4:00–4:59 0.012 0.418 0.00 0.978 
Hour 5: 5:00–5:59 0.956 0.319 8.99 0.003 
Hour 6: 6:00–6:59 1.776 0.302 34.61 <0.001 
Hour 7: 7:00–7:59 2.284 0.299 58.29 <0.001 
Hour 8: 8:00–8:59 2.140 0.299 51.01 <0.001 
Hour 9: 9:00–9:59 1.879 0.301 38.98 <0.001 
Hour 10: 10:00–10:59 1.876 0.301 38.78 <0.001 
Hour 11: 11:00–11:59 2.023 0.301 45.31 <0.001 
Hour 12: 12:00–12:59 2.105 0.300 49.17 <0.001 
Hour 13: 13:00–13:59 2.110 0.300 49.41 <0.001 
Hour 14: 14:00–14:59 2.232 0.299 55.44 <0.001 
Hour 15: 15:00–15:59 2.432 0.299 66.14 <0.001 
Hour 16: 16:00–16:59 2.550 0.299 72.83 <0.001 
Hour 17: 17:00–17:59 2.553 0.299 73.00 <0.001 
Hour 18: 18:00–18:59 2.243 0.299 56.03 <0.001 
Hour 19: 19:00–19:59 1.939 0.301 41.45 <0.001 
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Table A.2 Continued 

Std. 
Effect Estimate Error 

Wald χ2

Statistic Pr. > | χ2 | 
Hour 20: 20:00–20:59 1.669 0.304 30.25 <0.001 
Hour 21: 21:00–21:59 1.344 0.309 18.94 <0.001 
Hour 22: 22:00–22:59 0.922 0.323 8.16 0.004 
Hour 23: 23:00–23:59 0.543 0.349 2.42 0.120 
Season: Spring–reference 
Season: Summer 0.281 0.035 66.30 <0.001 
Season: Fall 0.543 0.031 302.08 <0.001 
Season: Winter 0.474 0.033 209.57 <0.001 
Day: Monday–reference 
Tuesday -0.146 0.087 2.86 0.091 
Wednesday -0.332 0.098 11.50 0.007 
Thursday -0.509 0.147 12.00 0.001 

Interaction Effects 
Log propensity*Day: Mon reference 
Log propensity*Day: Tue 0.038 0.019 3.98 0.046 
Log propensity*Day: Wed 0.089 0.021 18.14 <0.001 
Log propensity*Day: Thu 0.141 0.029 22.55 <0.001 
Number of Observations 6,294 
Adjusted R2 0.53 
Residual Standard Error (veh/hour) 154.6 

To examine the estimation capability of the model, the observed and predicted values and the 
residuals were closely investigated. The calculated RSE was 154.6 vehicles per hour (Table A.2). 
Conversely, the mean of the observed hourly traffic counts was 146.1 vehicles per hour. One of 
the reasons for this difference could be that the travel propensity function does not by definition 
capture the effect of non-work-related trips and aberrations occur for not considering these trips. 
Also, since the trips were assumed to be from sub-TAZs to sub-TAZs, the traffic generated from 
the freeways and other major roads were not covered. To understand the prediction errors, the 
scatter plots and the residual plots were also examined. 

In Figure A.2, different percentiles of the residuals for the sample as a function of hour are 
illustrated. It is clear that the fluctuations in the residuals for daytime traffic were comparatively 
higher than that of nighttime traffic. 
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Figure A.2 Percentiles of residuals as a function of hour. 

Furthermore, the residuals resulting from the regression model are shown in Figure A.3. The plot 
represents a “cone” shape, which indicates that the residuals were much more spread out as the 
fitted values became larger. This pattern is indicative of heteroskedasticity in the data set, which 
refers to non-constant variance. When the scatter of the errors varies depending on the value of 
one or more of the independent variables, the error terms are heteroskedastic. This situation can 
be remedied with a log-transformation of the dependent variable, which was demonstrated 
previously. 
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Figure A.3 Residuals plot. 



             
            

             
          

        
             

        
          

           
             
               

                
          

     
 

          
              

              
            

               
             

             
              

             
           

   
 

               
              

                
            
             

                
              
         
            

             
        

             
 

 
           

         

A.5  Discussion 

Two of the model variables were formulated to represent the traffic generation and exchange 
(travel propensity) and the path selection (travel time excess index). The proposed model for 
hourly traffic volume prediction follows the practice and meets the needs of INDOT and other 
agencies. The developed statistical model includes spatial and temporal variables, road 
characteristics, and the mentioned two variables of traffic generation and routing. Thus, the 
reported research addresses the conditions of a reasonable and relatively simple model for 
predicting hourly traffic volumes. In summary, promising groundwork for future efforts in traffic 
predictions were laid out in this study via regression analysis. In terms of the individual effects of 
the explanatory variables, higher travel propensity, as anticipated, was associated with higher 
traffic volumes on roadways. Also, intuitively, the travel time excess index was linked to lower 
traffic counts on segments. The model estimates also indicate that more vehicles are present in any 
time of day on higher road classes. As for seasonal fluctuations, fall has the highest traffic volume 
while fewer vehicles are present on roads in spring. The model also presents reasonable estimates 
regarding individual days of the week and the time of day. 

However, the research results were affected by the following data limitations. Inadequate high-
resolution data for lower class roads may have caused the sample to not fully reflect the population 
of these roads. The effect of traffic congestion was ignored for the sake of the method’s 
convenience but may have contributed to the error magnitude. However, this effect could be much 
smaller when the method is applied to rural roads where congestion is less likely than on urban 
roads. The assumption was made that all the traffic observed was the result of travel activities 
between sub-TAZs and within 40 minutes of travel time. In reality, some traffic observed near 
interchanges and other intersections of interstate and US roads may have had some origin and 
destination traffic of long distance and was not related to work. Since the methodology here 
focused on work-related trips between sub-TAZs, it does not address the contribution of non-work-
related trips. 

There were several limitations of the sample data set chosen for the estimation models. The scope 
of this study did not include interstates, freeways, or principal arterials. Aside from that, the 
percentage of minor collectors and local roads was less than 10 percent of the sample size since 
the INDOT data set lacked coverage counts for these roads. Moreover, observations for weekends 
and Fridays were omitted due to insufficient representative data. To further develop the models, 
traffic counts from these days could be useful. The scope of the research did not include rural road 
segments due to the time constraints of the study. As mentioned earlier in this section, another 
limitation was time-independent network modeling, which does not consider traffic congestion. 
However, this comment also increases the prospect that an applied methodology may perform 
better when applied for rural roads where roads are rarely congested. Other potentially useful land-
use variables such as vehicle ownership, business sales, floor size of establishments, etc. could be 
considered in future work. Disaggregate weather data also may better facilitate the estimation of 
hourly traffic volumes. 

Addressing these drawbacks would be the first steps to further refine the proposed models. 
Although in the prediction of hourly traffic volumes, a log-normal regression was implemented, 
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alternatively, a negative binomial (NB) model should be considered. An NB count data model with 
an over-dispersion parameter may better explain the variance. Nevertheless, the research 
methodology provides greater understanding of commuter trip characteristics, route preferences, 
and the impacts of time-dependent conditions on traffic. 
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APPENDIX  B. RISK-BASED  SMS APPLICATION  RMT 

B.1 Risk-Based  SMS  Overview

RMT tool (named  here Risk  Management Tool, RMT)  is a prototype computer  application  that  
supports the following operations: 
• Selecting for evaluation the high-crash segments identified with SNIP.
• Visualizing the hourly crash risk on the selected freeway segments in several years.
• Applying conditions (called triggers) that activate operational countermeasures.
• Estimating the number of crashes during the subperiods with active countermeasures to

evaluate the treatment’s effectiveness (computational elements of RoadHAT 4D to be
implemented in RMT).

B.1.1  Segment  Selection

The RMT facilitates selecting road segments by clicking on the map or by selecting the 
corresponding record on the data table. Both the segments on the map and the record on the table 
are highlighted when selected. The program automatically loads the shape file of the road 
segments and the corresponding time dependent data such weather conditions, vehicles’ speed, 
and traffic volume. 

B.1.2  Results  Visualization

The selection process is immediately followed by building and displaying a risk profile that can 
be aggregated by hour, day, or month. Such visualization is beneficial in presenting the results to 
decision-makers and to identify time patterns not detectable otherwise. 

B.1.3  Conditions  (Triggers)

The temporal profile can be filtered by applying by the user certain traffic and environmental 
(for example, weather) conditions called triggers. These triggers may be used to identify periods 
when a particular countermeasure is to be applied. Once the conditions (triggers) are selected, the 
user should refresh the results to see the updated results that include the estimated number of 
crashes affected by the countermeasure. 

B.1.4  Crashes  Affected  by  Countermeasures

Once the road segments are selected and the triggers of operational countermeasure are set, the 
program identifies the periods when the selected countermeasures are active, and it estimates the 
total number of crashes affected by the countermeasure in these periods. The number of crashes 
is also estimated by severity levels as defined in RoadHAT 4D. Estimation of injury crashes 
(KABC) and PDO crashes are done with the statistical models. Then, the KABC crashes are split 
between KA and BC crash categories based on the proportion of these crashes in rural freeways. 
The resulting estimates may be then used to run the BC analysis with RoadHAT 4D 
computational elements embedded in RMT (not implemented). 

B-1



          
          
      

   

       
      

     

       
       

            
    

          
         

         
         

                
         

      
           
           

     
          

  

B.2  Installation

RMT is compatible with MS Windows 64-bit operating systems. The RMT files for installation 
are compressed and the user must unzip them in the folder of his or her choice prior to installing 
the software. The unzipped files are shown in Figure B.1. 

Figure B.1 RMT files. 

The unzipped Readme.txt file provides installation instructions for the tool. These steps are also 
discussed below. The user should retain the zipped/compressed file to reinstall the program in 
the future if necessary. 

First, the RMT Data folder containing the RMT database must be copied into the PC’s 
C:\Users\Public folder (Figure B.2). The program uses two types of data, the first type is time-
independent data which is related to the infrastructure, and the second one is time-dependent data 
such as weather, speed, and traffic. 

B.2.1  Time-Independent  Data

A shapefile from ArcGIS was used to store the non-time-dependent data. A shapefile contains 
both the geometry necessary to locate the segments on the map and the data corresponding to 
their characteristics. Roadway segments and its characteristics were obtained from INDOT’s 
Road Network Data (RND) and supplemented with Google Earth’s historical imagery. 

B.2.2  Time-Dependent  Data

This data is contained in a csv file (comma delimited values) for each year. Each segment 
corresponds to 8760 or 8784 records depending on whether or not it is a leap year. Each record 
represents the values corresponding to 1 hour and contains information on the segment id, date 
and time, vehicles’ speed, weather, and traffic volume. Operating travel speeds at the segment 
level are assembled from the National Performance Management Research Data Set (NPMRDS). 
Hourly traffic volumes and vehicle classification are obtained from INDOT’s Traffic Count 
Database System (TCDS). Weather conditions are accessed via the Indiana State Climate Office 
(INClimate) at Purdue University. 
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Figure B.2 Proper location of RMT data folder. 

The next step is to install the RMT. The user should return to the folder where the content of the 
zip file was extracted and click on the setup.exe file (Figure B.3). The RMT interface should 
appear (Figure B.4). The splash screen will stay on screen until all data files are read, which 
might take a few seconds. Once the files are read, the splash screen will disappear. 

Figure B.3 Running the installation process. 
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Figure B.4 RMT initial window. 

B.3  Launching  RMT 

The RMT can be launched using any of the following methods after installation: 
Method 1: 
Double-clicking the shortcut on the desktop  
Method 2: 
1. Pressing the “Start” button.
2. Afterwards, RMT should appear in the list of installed programs.
3. Single click on the shortcut.

Method 3: 
1. Pressing the “Start” button.
2. Starting to type “RMT”, and the program shortcut should appear in the search results.
3. Single clicking on the shortcut.
When executed, the RMT interface window appears within several seconds (Figure B.4). Any 
temporary tables remaining open from the previous run are closed. The splash screen will stay on 
screen until all data files are read, which might take a few seconds. 

As noted in the Installation section of this manual, the RMT_Data folder containing the RMT 
database must be located in the PC’s C:\Users\Public\RMT Data\ folder prior to the installation 
of the software interface. Otherwise, the user will receive an error message at the attempt at 
running the software. 
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B.4  Prototype  Risk-Based  SMS  Application  

B.4.1  Interface  

Figure B.5 RMT main interface. 

Risk-based SMS (Risk Management Tool, RMT) provides an adaptive interface that allows 
adjusting its layout and design to fit the user's preferences. It allows the user to move, dock, 
resize, pin, and unpin windows. It includes a menu bar, the visualization map, the segment table, 
the risk profile, the conditions window, and the estimation of crashes affected by a 
countermeasure window (Figure B.5). Each of these components is described below. 

To change the layout, users click and hold a window’s title bar, drag it, and the interface 
indicates where it can be docked (Figure B.6). 
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Figure B.6 Adaptive interface. 

When hovering the mouse over a tab in a hidden window, the window is displayed to allow its 
use. The window can be unpinned to make it permanently visible or pinned for hiding it 
automatically (Figure B.7). 

Figure B.7 Pin and unpin windows. 
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B.4.2  Map  Window  

Users can select the preferred map mode: Satellite, Hybrid, or Map. On the map option, users can 
select the preferred online map source between Google maps or Bing Map. In the same menu, 
users can increase or decrease the zoom level by clicking on the + or – buttons or by moving the 
mouse wheel (Figure B.8) 

Users can move the map by dragging it with the mouse left button. The map window displays the 
geo coordinates of both the center of the map and of the mouse current position.  

Figure B.8 Map window. 

Figure B.9 Shapefile visualization control. 

The RMT program automatically loads the segments shape file and displays it on the map. 
The Segments color and width can be changed using the side panel. Users type a new value on 
the size column to change the segment’s line with on the map. Users right-click on the color to 
display a color selection option for the segments. (Figure B.9) 
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Clicking with mouse on segments in the map selects or deselects them. A segment can also be 
selected in the data table. The selected segments on the map and the corresponding records in the 
data table are highlighted (Figure B.5). The visualization graphs are updated with every new 
selection. 

B.4.3  Risk  Profile  Visualization  

A change in the segment selection automatically displays the risk profile for the selected 
segments. The risk profile chart shows three elements: total crash risk profile, severe crash risk 
profile, and periods selected based on triggers (explained in Section 4.4). User can select the 
interval of aggregation: hour, day, or month (Figure B.10). 

Figure B.10 Risk profile. 

Use the logarithmic check box to switch between linear and logarithmic scales. In addition, the 
axes scale on the risk profile chart can be modified by hovering with mouse over the X or Y axis 
and use the mouse wheel to adjust the scale. 

When the conditions are selected (Section 4.4), use the Affected Only check box to display the 
profile only during the periods with the selected conditions (Figure B.11). 

Figure B.11 Risk profile for the affected periods only 
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B.4.4  Conditions  (Triggers)  

The risk under certain traffic and environmental conditions, including their combination, can be 
analyzed in the Conditions Window. 

Users select the period of time to analyze by entering or selecting the starting and end dates 
(Figure B.12). Other triggers available to select include day of week, season, time of day, light 
conditions, traffic conditions, precipitation, freeze, and traffic speed downtrend. Clicking check 
boxes select or deselect the conditions. Selected condition is used to filter periods for displaying 
the risk level. For convenience, all conditions unselected are equivalent to all being selected. 
After making all desired selections to be used jointly, users must click the Refresh button to 
update the results. 

Figure B.12 Filtering window. 
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B.4.5  Estimating  Crashes  Affected  by  Countermeasures  

When the segment selection changes or when a user refreshes the results after changing 
conditions, the numbers of crashes by severity and the total number affected by the 
countermeasure are estimated and displayed in a table. The table also includes the number of 
hours when the operational countermeasures are triggered (Figure B.13). 

Figure B.13 Estimating crashes affected by countermeasures. 

The resulting annual number of crashes can be used in the benefit-cost analysis using the 
computational elements of the RoadHAT 4D (not implemented yet in RMT). 
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